Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Versatile plastic chip

A recently developed little plastic chip makes it possible to identify recycled bottles, assure the quality of food in supermarkets and measure our blood sugar levels.
The sensor, which measures 10mm x 10mm, can replace advanced, expensive optical devices containing lenses and grids in what are commonly called spectroscopic tools. The sensor is also more reliable than traditional optical devices that require calibrating and maintenance. This chip does not corrode, is robust and provides quick results from analyses. The chips can be produced in the same type of machines that make compact discs. Inventors Odd Løvhaugen and Ib-Rune Johansen recently received SINTEF’s award for outstanding research for developing this technology.

The plastic chip was originally developed to detect different types of plastic; it is now used in bottle recycling machines and in a recently developed CO2 sensor that controls ventilation in buildings. As the chip is so robust, it can be used in harsh environments, such as in the depths of an oil well to detect gases. It can measure both the blood’s oxygen intake and blood sugar levels in the human body. It can also be used in the quality control of food in supermarkets where it measures both fat and water content.

Synthetic hologram

The technology in the chip is called DOE, which is an abbreviation for Diffractive Optical element. It is here that the secret lies. The chip contains a synthetic hologram that functions as a light filter. The hologram diffracts the light reflected by an object or gas and is able to identify energy in the infrared spectrum. The hologram is designed to measure the energy at particular wavelengths because each substance emits a number of spectral peaks that are specific to that particular substance. While the eye sees two-dimensional figures, a hologram reproduces the light waves instead of the actual object. The chip can therefore be used to identify or check the quality of substances in many contexts, says SINTEF research scientist Odd Løvhaugen.


The research scientists have now taken out a patent, based on the same technology, for a device to measure alcohol. The device can test the level of alcohol on the spot in a driver’s blood and, if it is certified to do so, will be able to replace the blood samples that currently need to be tested by forensic laboratories. The scientists say the chip will give less ambiguous results than the traditional methods in use today, which employ traditional spectroscopy.

Aase Dragland | alfa
Further information:

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>