Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find cause of frontotemporal dementia

17.07.2006
Frontotemporal Dementia (FTD) is the second major form of dementia. Under the direction of Christine Van Broeckhoven, researchers from the Flanders Interuniversity Institute for Biotechnology (VIB) affiliated to the University of Antwerp have recently discovered that the progranulin growth factor plays an important biological role in the development of this form of dementia. Because progranulin is known primarily for its role in tumor formation, this research result is very surprising. Although progranulin’s proper role in the brain is not yet known, it may well be responsible for the survival of brain cells, because FTD patients have a shortage of this growth factor. The new finding predicts that progranulin might also play a role in other types of brain diseases in which brain cells die off - such as Alzheimer’s disease and Parkinson’s disease.

Frontotemporal dementia

After Alzheimer’s, frontotemporal dementia is the most prevalent form of dementia in patients younger than 65. FTD affects the frontal lobe, causing the brain tissue to die off. The frontal lobe is the foremost part of the brain and accounts for about 30% of the brain’s mass. Among other things, the frontal lobe is involved in regulating behavior, movement and mood, and is responsible for cognitive functions like memory and speech. So, FTD is clinically characterized by changes in personality and, in a later stage, loss of cognitive functions.

Looking for the needle in the haystack

Genetic research has previously shown that FTD is caused by a defect in chromosome 17. Chromosome 17 is the carrier of the tau protein’s hereditary code, and defects in this protein cause tau-positive FTD. However, there is another form of FTD that occurs much more frequently than tau-positive FTD - namely, ubiquitin-positive FTD (FTDU). Patients with FTDU do not have a defect in the tau protein, but in another protein in chromosome 17. Christine Van Broeckhoven‘s research team has now identified this protein: progranulin. In order to substantiate this discovery, the group worked intensively with neurologists from university memory clinics in Antwerp, Leuven, and Ghent. Genetic analyses of the DNA from FTDU families identifies defects that cause a shortage of progranulin. Progranulin is known in cancer research, where a surplus of this protein leads to tumors. What it does in the brain, and how it supports brain cells, is not yet known.

An unexpected turn

The biological role of progranulin in the formation of FTD provides a totally new insight into how brain cells die off. Van Broeckhoven’s team’s research indicates that the quantity of progranulin in the brain is important for the brain cells’ survival. The hereditary defects that the researchers have found in FTD patients cause only 50% of the protein to be produced, because only one copy of the gene is active. Therefore, FTD patients produce less progranulin than healthy individuals. It has already been shown that too much progranulin leads to cancer - now, these researchers are revealing that too little progranulin underlies FTD.

New diagnostic and therapeutic possibilities

This discovery does not directly result in a new remedy for FTD patients - a lot more research is needed for that. But this finding does offer the prospect of a new treatment for FTD and possibly also for other diseases of the brain that entail the dying off of brain cells - like Alzheimer’s disease as well as Parkinson’s disease. Given that a deficiency of progranulin leads to FTD, administration of this protein could offer a simple solution. However, the trick will be to administer the right quantity, because too much progranulin leads to the formation of tumors. A fine line to navigate! Thanks to this finding, though, upon a doctor’s request, a genetic study can be done on FTD patients and their family members if they so desire.

Sooike Stoops | alfa
Further information:
http://www.vib.be

More articles from Health and Medicine:

nachricht New vaccine production could improve flu shot accuracy
25.07.2017 | Duke University

nachricht Chances to treat childhood dementia
24.07.2017 | Julius-Maximilians-Universität Würzburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>