Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New source of multipotent adult stem cells discovered in human hair follicles

13.07.2006
Implications for personalized approaches to transplants

Researchers at the University of Pennsylvania School of Medicine have isolated a new source of adult stem cells that appear to have the potential to differentiate into several cell types. If their approach to growing these cells can be scaled up and proves to be safe and effective in animal and human studies, it could one day provide the tissue needed by an individual for treating a host of disorders, including peripheral nerve disease, Parkinson's disease, and spinal cord injury.

"We are very excited about this new source of adult stem cells that has the potential for a variety of applications," says senior author Xiaowei (George) Xu, MD, PhD, Assistant Professor of Pathology. "A number of reports have pointed to the fact that adult stem cells may be more flexible in what they become than previously thought, so we decided to look in the hair follicle bulge, a niche for these cells." Xu and colleagues report their findings in the latest issue of the American Journal of Pathology.

Hair follicles are well known to be a source for adult stem cells. Using human embryonic stem cell culture conditions, the researchers isolated and grew a new type of multipotent adult stem cell from scalp tissue obtained from the National Institute of Health's Cooperative Human Tissue Network.

The mutipotent stem cells grow as masses the investigators call hair spheres. After growing the "raw" cells from the hair spheres in different types of growth factors, the investigators were able to differentiate the stem cells into multiple lineages, including nerve cells, smooth muscle cells, and melanocytes (skin pigment cells).

The differentiated cells acquired lineage-specific markers and demonstrated appropriate functions in tissue culture, according to each cell type. For example, after 14 days, 20% to 40% of the cells in the melanocyte media took on a weblike shape typical of melanocytes. The new cells also expressed biomarkers typical of pigment cells and when placed in an artificial human skin construct, produced melanin and responded to chemical cues from normal epidermis skin cells.

After 14 days, about 10% of the stem cells in the neuronal cell line -- a type of cell not present in skin or hair -- grew dendrites, the long extensions typical of nerve cells and expressed neuronal proteins. The neurotransmitter glutamate was also present in the cells, but the neurotransmitter dopamine was not detected.

Thirdly, about 80% of the stem cells grown in the muscle media differentiated into smooth muscle cells. These new muscle cells also contracted when placed in a collagen matrix.

Overall, the researchers showed that human embryonic stem cell media could be used to isolate and expand a novel population of multipotent adult stem cells from human hair follicles. "Although we are just at the start of this research, our findings suggest that human hair follicles may provide an accessible, individualized source of stem cells," says Xu. The researchers are now working on inducing other cell types from the hair sphere cells and testing the cells in animal models. Study co-authors are Hong Yu, Suresh M. Kumar, and Geza Acs, all from Penn; and Dong Fang, Ling Li, Thiennga K. Nguyen, and Meenhard Herlyn, all from the Wistar Institute, Philadelphia.

Karen Kreeger | EurekAlert!
Further information:
http://www.uphs.upenn.edu

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>