Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


3-D model reveals secrets of metastasis

A cancer cell breaks away from a primary tumor and settles in a new location, where it once again divides. Pharmaceutical companies typically use simplistic two-dimensional assays for this process, which is known as metastasis, to evaluate anti-cancer therapeutics. In these assays, cells crawl across the surface of a matrix, traveling in a single plane. But a new study indicates that this approach misses some crucial phenomena.

Working in the labs of Whitehead Member Paul Matsudaira and MIT professor Douglas Lauffenburger, postdoctoral researcher Muhammad Zaman discovered that cells move quite differently in three dimensions. His study, which focused on human prostate tumor cells, appeared this week in the online early edition of Proceedings of the National Academy of Sciences.

"Two-dimensional assays ignore the obstacles that cells face in their natural contexts," explains Zaman, who recently became an assistant professor at the University of Texas at Austin. "In 3D, cells move through a thick jungle of fibers, or "vines"TM, that hinder forward progress."

Cells must either squeeze through or chop up these putative vines to get anywhere. As a result, they move slower in three dimensions.

In an interesting twist, all cells need at least some vines to move, as they latch onto the "branches" with claw-like proteins called integrins and pull themselves forward. When Zaman disabled some of these claws, in a manner analogous to certain anti-cancer drugs, the cells moving across the top of the jungle canopy (in two dimensions) needed a greater number of vines to keep up their pace, while cells plowing through the jungle instead needed vines chopped to maintain the same speed. The complexity of this situation is further increased in that the cells become dramatically sensitive to the stiffness of the vines when the integrins are disabled and consequently tend to squeeze through the vines rather than pushing them aside.

"Our findings help explain why two-dimensional assays for metastasis-inhibiting drugs do not effectively predict their effects in tissue," says Lauffenburger, who is director of MITâ€TMs Biological Engineering Division. He believes pharmaceutical companies will eventually use three-dimensional assays, accompanied by appropriate computational models such as that also recently published by Zaman (in Biophysical Journal in 2005), to determine how drugs affect metastasis.

But technology must improve before more complicated 3D studies are attempted. For his 3D work Zaman worked with one sample at a time, using a special confocal microscope at the Whitehead-MIT BioImaging Center. The microscope divided each specimen into virtual slices, generating a new stack of images every 15 minutes.

"It took me about a year to get enough data because the microscope wasnâ€TMt designed for high-throughput experiments," he says. Fortunately, the BioImaging Center has one of the most powerful sets of computers at MIT and the imaging processing and analysis went quite quickly.

"Muhammad was successful for two reasons," says Matsudaira. "His computational model predicted what would happen in virtual experiments and then he was able to go straight to test the predictions with these complicated 3D experiments. As a result, the sophisticated models of cell movement enhance our understanding of key biological processes, including metastasis."

David Cameron | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>