Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New model of brain sheds light on triggers of autism

12.07.2006
iSTART model illustrates brain mechanisms that lead to autistic behaviors

Approximately 1.5 million children and adults in the U.S. have autism and it is estimated to be the fastest growing developmental disability with a 10 – 17 percent increase each year. While much is known about the symptoms of autism, the exact cause of the condition is not yet defined.

A new model of the brain developed by Dr. Stephen Grossberg, professor and chairman of the Department of Cognitive and Neural Systems at Boston University, and Dr. Don Seidman, a pediatrician with the DuPage Medical Group in Elmhurst, IL, sheds light on the triggers of behaviors commonly associated with autism. The paper, "Neural Dynamics of Autistic Behaviors: Cognitive, Emotional, and Timing Substrates," appears in the July issue of the journal Psychological Review, published by the American Psychological Association.

"Autism involves multiple genes and correspondingly, people with autism are known to have multiple cognitive, emotional, and motor symptoms – such as impaired development of speech and difficulty expressing emotions," said Dr. Grossberg. "The iSTART model describes the various brain mechanisms that underlie autism and how they may give rise to the symptoms of the condition."

iSTART, which stands for Imbalanced Spectrally Timed Adaptive Resonance Theory, is derived from the earlier START model developed by Grossberg to explain how the brain controls normal behaviors. The new model describes how brain mechanisms that control normal emotional, timing, and motor processes may become imbalanced and lead to symptoms of autism. START and its imbalanced version iSTART are a combination of three models, each one of which tries to explain fundamental issues about human learning and behavior.

The first, called Adaptive Resonance Theory, or ART, proposes how the brain learns to recognize objects and events. Recognition is accomplished through interactions between perceptually-driven inputs and learned expectations. Inputs attempt to match expectations which helps prompt the brain to anticipate input/expectation patterns.

"When a match occurs, the system locks into a resonant state that drives how we learn to recognize things; hence the term adaptive resonance," explained Grossberg.

The degree of match that is required for resonance to occur is set by a vigilance parameter which controls whether a particular learned representation will be concrete or abstract. Low vigilance allows for learning of broad abstract recognition categories, such as a category that is activated by any face; high vigilance forces the learning of specific concrete categories, such as a category that is activated by a particular view of a familiar friend's face. iSTART proposes that individuals with autism have their vigilance fixed at such a high setting that their learned representations are very concrete, or hyperspecific.

"Hypervigilance leads to hyperspecific learning which perpetuates a multitude of problems with learning, cognition, and attention," said Grossberg.

The second model, called the Cognitive-Emotional-Motor, or CogEM, model, extends ART to the learning of cognitive-emotional associations, or associations that link objects and events in the world to feelings and emotions that give these objects and events value. Under normal circumstances, arousal of the circuits in the brain that control emotion are set at an intermediate level. Either under-arousal or over-arousal of these circuits can cause abnormal emotional reactions and problems with cognitive-emotional learning.

"If the emotional center is over-aroused, the threshold to activate a reaction is abnormally low, but the intensity of the emotion is abnormally small," said Grossberg. "In contrast, if the emotional circuits are under-aroused, the threshold for activating an emotion is abnormally high, but when this threshold is exceeded, the emotional response can be over reactive. The iSTART model proposes that individuals with autism experience under-aroused emotional depression which helps explain symptoms like reduced emotional expression as well as emotional outbursts."

The third model, called the Spectral Timing model, clarifies how the brain adaptively times responses in order to acquire rewards and other goals. iSTART shows how individuals with autism experience failures of adaptive timing that lead to the premature release of behaviors which are then unrewarded.

"iSTART depicts how autistic symptoms may arise from breakdowns in normal brain processes, notably a combination of under-stimulated emotional depression in the amygdala and related brain regions, learning of hyperspecific recognition categories in the temporal and prefrontal cortices, and breakdowns of adaptively timed attention and motor circuits in the hippocampal system and cerebellum," said Grossberg. "The model clarifies how malfunctions in these mechanisms can, though a system-wide vicious circle, cause and maintain problems with them all."

According to the researchers, iSTART is a breakthrough in the understanding of the many factors that contribute to autism and provides a unifying perspective that connects autistic symptoms to brain mechanisms that have no obvious connection to the condition.

"This approach should make it easier for scientists studying normal behavior to connect their work to autism research," said Grossberg. "iSTART opens up a wide range of possible new experiments to evaluate autistic behaviors and further test and develop the model."

Kira Edler | EurekAlert!
Further information:
http://www.bu.edu
http://www.cns.bu.edu/Profiles/Grossberg

More articles from Health and Medicine:

nachricht Cholesterol-lowering drugs may fight infectious disease
22.08.2017 | Duke University

nachricht Once invincible superbug squashed by 'superteam' of antibiotics
22.08.2017 | University at Buffalo

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Researchers devise microreactor to study formation of methane hydrate

23.08.2017 | Materials Sciences

ShAPEing the future of magnesium car parts

23.08.2017 | Automotive Engineering

New insights into the world of trypanosomes

23.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>