Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New model of brain sheds light on triggers of autism

12.07.2006
iSTART model illustrates brain mechanisms that lead to autistic behaviors

Approximately 1.5 million children and adults in the U.S. have autism and it is estimated to be the fastest growing developmental disability with a 10 – 17 percent increase each year. While much is known about the symptoms of autism, the exact cause of the condition is not yet defined.

A new model of the brain developed by Dr. Stephen Grossberg, professor and chairman of the Department of Cognitive and Neural Systems at Boston University, and Dr. Don Seidman, a pediatrician with the DuPage Medical Group in Elmhurst, IL, sheds light on the triggers of behaviors commonly associated with autism. The paper, "Neural Dynamics of Autistic Behaviors: Cognitive, Emotional, and Timing Substrates," appears in the July issue of the journal Psychological Review, published by the American Psychological Association.

"Autism involves multiple genes and correspondingly, people with autism are known to have multiple cognitive, emotional, and motor symptoms – such as impaired development of speech and difficulty expressing emotions," said Dr. Grossberg. "The iSTART model describes the various brain mechanisms that underlie autism and how they may give rise to the symptoms of the condition."

iSTART, which stands for Imbalanced Spectrally Timed Adaptive Resonance Theory, is derived from the earlier START model developed by Grossberg to explain how the brain controls normal behaviors. The new model describes how brain mechanisms that control normal emotional, timing, and motor processes may become imbalanced and lead to symptoms of autism. START and its imbalanced version iSTART are a combination of three models, each one of which tries to explain fundamental issues about human learning and behavior.

The first, called Adaptive Resonance Theory, or ART, proposes how the brain learns to recognize objects and events. Recognition is accomplished through interactions between perceptually-driven inputs and learned expectations. Inputs attempt to match expectations which helps prompt the brain to anticipate input/expectation patterns.

"When a match occurs, the system locks into a resonant state that drives how we learn to recognize things; hence the term adaptive resonance," explained Grossberg.

The degree of match that is required for resonance to occur is set by a vigilance parameter which controls whether a particular learned representation will be concrete or abstract. Low vigilance allows for learning of broad abstract recognition categories, such as a category that is activated by any face; high vigilance forces the learning of specific concrete categories, such as a category that is activated by a particular view of a familiar friend's face. iSTART proposes that individuals with autism have their vigilance fixed at such a high setting that their learned representations are very concrete, or hyperspecific.

"Hypervigilance leads to hyperspecific learning which perpetuates a multitude of problems with learning, cognition, and attention," said Grossberg.

The second model, called the Cognitive-Emotional-Motor, or CogEM, model, extends ART to the learning of cognitive-emotional associations, or associations that link objects and events in the world to feelings and emotions that give these objects and events value. Under normal circumstances, arousal of the circuits in the brain that control emotion are set at an intermediate level. Either under-arousal or over-arousal of these circuits can cause abnormal emotional reactions and problems with cognitive-emotional learning.

"If the emotional center is over-aroused, the threshold to activate a reaction is abnormally low, but the intensity of the emotion is abnormally small," said Grossberg. "In contrast, if the emotional circuits are under-aroused, the threshold for activating an emotion is abnormally high, but when this threshold is exceeded, the emotional response can be over reactive. The iSTART model proposes that individuals with autism experience under-aroused emotional depression which helps explain symptoms like reduced emotional expression as well as emotional outbursts."

The third model, called the Spectral Timing model, clarifies how the brain adaptively times responses in order to acquire rewards and other goals. iSTART shows how individuals with autism experience failures of adaptive timing that lead to the premature release of behaviors which are then unrewarded.

"iSTART depicts how autistic symptoms may arise from breakdowns in normal brain processes, notably a combination of under-stimulated emotional depression in the amygdala and related brain regions, learning of hyperspecific recognition categories in the temporal and prefrontal cortices, and breakdowns of adaptively timed attention and motor circuits in the hippocampal system and cerebellum," said Grossberg. "The model clarifies how malfunctions in these mechanisms can, though a system-wide vicious circle, cause and maintain problems with them all."

According to the researchers, iSTART is a breakthrough in the understanding of the many factors that contribute to autism and provides a unifying perspective that connects autistic symptoms to brain mechanisms that have no obvious connection to the condition.

"This approach should make it easier for scientists studying normal behavior to connect their work to autism research," said Grossberg. "iSTART opens up a wide range of possible new experiments to evaluate autistic behaviors and further test and develop the model."

Kira Edler | EurekAlert!
Further information:
http://www.bu.edu
http://www.cns.bu.edu/Profiles/Grossberg

More articles from Health and Medicine:

nachricht Improving memory with magnets
28.03.2017 | McGill University

nachricht Graphene-based neural probes probe brain activity in high resolution
28.03.2017 | Graphene Flagship

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>