Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers get closer to preventing Alzheimer's disease

10.07.2006
A recent study directed by Mount Sinai School of Medicine identifies a faulty molecule in the brain found in cases of mild cognitive impairment (MCI). Researchers say this faulty molecule may be responsible for the progression of MCI to mild Alzheimer's disease (AD) dementia. The study, which appeared June 10th online in the journal Neurobiology of Aging, may lead to preventative treatments for AD.

An estimated 4.5 million Americans have Alzheimer's disease and presently there are no known cures or effective preventive strategies.

"Alzheimer's Disease is a growing health concern that affects millions of people, "says Giulio Maria Pasinetti, M.D., Ph.D., Professor of Psychiatry and Neuroscience, Director of the Neuroinflammation Research Center at Mount Sinai School of Medicine and lead author of the study. "We hope our research provides direction for preventative treatments to delay the onset of AD dementia by eliminating amyloid plaque-causing peptides in the brain."

People with AD exhibit elevated levels of beta-amyloid peptides that cause plaque buildup in the brain (the main characteristic of AD). In the earliest stages of Alzheimer's, beta-amyloid peptides are on the rise, especially in the two connected brain regions critical for memory functions-- the hippocampus and entorhinal cortex.

In this study, Dr. Pasinetti and colleagues at Mount Sinai School of Medicine in New York suggests one reason for that early increase of beta-amyloid peptides: an enzyme that breaks down beta-amyloid peptides, also referred to as an insulin-degrading enzyme (IDE), is not active in the brain in the cases at high-risk for developing AD. To assess possible changes in IDE during MCI, the investigators measured protein levels and enzymatic activity in postmortem brain tissue from 46 elderly subjects.

Mount Sinai Press Office | EurekAlert!
Further information:
http://www.mssm.edu

More articles from Health and Medicine:

nachricht Speed data for the brain’s navigation system
06.12.2016 | Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE)

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>