Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technology addresses female fertility preservation

06.07.2006
Women at risk for infertility, such as those needing cancer treatment, can freeze mature, fertilized eggs, but the process can take up to six weeks and for some this delay of treatment is not an option.

Immature follicles (the female egg and surrounding somatic cells) can be preserved at any time but are difficult to mature when removed from their normal environment.

A team of scientists from Northwestern University has developed a three-dimensional culture system that encapsulates follicles and allows immature eggs to grow and mature in vitro. (A follicle is a small spherical group of specialized support cells surrounding each egg.) This novel technology has already led to the live birth of healthy mice from in vitro grown follicles.

The results are published online this month by the journal Tissue Engineering.

The study shows that follicles grown individually in a three-dimensional biomaterial called alginate maintain normal connections between follicle and egg, resulting in the development of eggs, which can be fertilized and ultimately lead to healthy embryos and the birth of live mice. Previously developed methods of growing follicles or eggs outside of the body do not provide the three-dimensional support to maintain the follicle structure in which the egg must grow.

"While the research is in its early stages, this work has implications for the preservation of fertility for women and girls with cancer," said Teresa K. Woodruff, Professor of Neurobiology and Physiology who led the study together with Lonnie D. Shea, Associate Professor of Chemical and Biological Engineering. "This system establishes a core technology for human egg banks for preservation of fertility."

The technology mimics the ovary and its environment. Follicles (each follicle has one egg) from mice were grown in vitro until fully matured by providing the follicles and eggs with the necessary hormones for development while maintaining their normal architecture. The eggs were then used for in vitro fertilization. The fertilized eggs were implanted into a foster mother that was of a different strain than the donor egg and sperm, resulting in babies with a different coat color, proving that the births were the result of the cultured embyros. Both male and female offspring were fertile.

Elizabeth Crown | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>