Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Transgenic Mice Produce Malaria Vaccine Proteins in Their Milk

19.12.2001


A vaccine against one of the world’s leading killers could one day be manufactured by livestock, researchers report. According to a study released today by the Proceedings of the National Academy of Sciences, scientists have developed mice that secrete malaria vaccine proteins into their milk. The purified experimental vaccine protected 80 percent of monkeys subsequently exposed to a lethal dose of the malarial parasite.



Anthony Stowers and Louis Miller of the National Institute of Allergy and Infectious Disease and their colleagues created two mouse strains, each genetically engineered to produce large quantities of a surface protein worn by the malarial parasite Plasmodium falciparum. To ensure that the proteins would come out in the animals’ milk, the team designed the so-called transgenes that make these proteins to switch on in the cells that line the mammary glands. Subsequent tests aimed at evaluating the ability of the proteins to stave off malaria yielded dramatic results: whereas only one of five vaccinated monkeys succumbed to the scourge, seven out of eight unvaccinated ones had to receive treatment for virulent malaria.

Looking forward, the researchers hope to produce similar results using larger animals such as goats—a goal that preliminary results indicate is achievable. "A vaccine must not only be effective, it must be cheap to manufacture if it is to be used in those countries hardest hit by malaria," Stowers comments. "Using transgenic animals to achieve both ends is an exciting possibility. If it works, a herd of several goats could conceivably produce enough vaccine for all of Africa."

Kate Wong | Scientific American

More articles from Health and Medicine:

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

nachricht ASU scientists develop new, rapid pipeline for antimicrobials
14.12.2017 | Arizona State University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>