Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Blocking HIV Before It Can Infect Any Normal Cells

19.12.2001


A fast, sensitive laboratory test that measures the molecular components involved during the critical moment when HIV infects a normal cell has been developed.


The advance was made by researchers in the University of California, San Diego (UCSD) School of Medicine and VA San Diego Healthcare System.

Described in the December 2001 issue of the Journal of Biological Chemistry (JBC), the test makes it possible to study and design new compounds to block the action of these molecular components before HIV can permanently infect a normal cell, causing it to manufacture more virus.

In recognition of the test as "groundbreaking work toward new pharmaceutical strategies to combat the virus that causes AIDS," the GlaxoSmithKline pharmaceutical company awarded UCSD’s Richard Kornbluth, M.D., Ph.D., with a Drug Discovery and Development Award during a professional meeting last week in Chicago.



Kornbluth, who was senior author of the JBC article, is a UCSD associate professor of medicine and a researcher with the VA San Diego Healthcare System.

Kornbluth explains that once HIV enters a host cell’s DNA, the cell becomes permanently infected after the virus splices its genes into the DNA of the host cell, a process known as "integration."

Drugs now available to treat HIV-infected individuals work by inhibiting enzymes that contribute to the spread of HIV, but no drugs have yet been approved that prevent the virus from integrating its DNA into the host cell.

"If we can find a way to intercept HIV during the integration process, when HIV DNA is spliced into normal cells, we can stop it before the cell is permanently infected," Kornbluth says.

HIV drugs now used to treat patients inhibit reverse transcriptase and protease, two of the three enzymes that play a role in infection. Reverse transcriptase works after HIV has entered a host cell by copying the viruses RNA genome into a DNA form. Protease affects the structure of the virus by cutting viral proteins into short pieces that can be incorporated into new viruses.

The third enzyme, integrase, is part of a group of molecules called a preintegration complex (PIC) that promotes HIV integration into the host cell DNA. The entire PIC moves through a pore in the nucleus of the invaded cell, where integrase inserts genes from the viral DNA into the cell’s chromosomes, which is required for the production of more HIV viruses by the infected cell.

The test developed in the Kornbluth lab will allow scientists and drug developers to search millions of chemical compounds for potential drugs that can inhibit any of the components required for the PIC to integrate, not just drugs that inhibit the enzyme integrase.

"The major way that pharmaceutical companies develop drugs is to screen collections of chemicals, anywhere from 100,000 to three million," Kornbluth says. "Our test will allow them to target the entire PIC which is the actual target a successful drug must attack. We believe that molecular components in the PIC, besides integrase, are critical to whether or not HIV is able to integrate into the host cell DNA."

In addition to its ability to look at the entire PIC, Kornbluth’s test is considerably faster than a test developed in 1987, with results taking 2-3 hours rather than 2-3 days. There’s also increased volume: 100 tests can be done in 2-3 hours, compared to about 30 tests that were run over 2-3 days.

With Kornbluth, authors of the article in JBC were Alexei Brooun, Ph.D., a postdoctoral fellow in Kornbluth’s lab, and Douglas R. Richman, M.D., director of the UCSD AIDS Research Institute and professor of medicine and pathology, UCSD and VA San Diego Healthcare System.

The work was funded by the American Foundation for AIDS Research (amfAR), the National Institutes of Health, the State of California’s Universitywide AIDS Research Program, the UCSD Center for AIDS Research, the Department of Veteran Affairs and the Research Center on AIDS and HIV Infection of the VA San Diego Healthcare System.

| International Science News

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>