Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Blocking HIV Before It Can Infect Any Normal Cells

19.12.2001


A fast, sensitive laboratory test that measures the molecular components involved during the critical moment when HIV infects a normal cell has been developed.


The advance was made by researchers in the University of California, San Diego (UCSD) School of Medicine and VA San Diego Healthcare System.

Described in the December 2001 issue of the Journal of Biological Chemistry (JBC), the test makes it possible to study and design new compounds to block the action of these molecular components before HIV can permanently infect a normal cell, causing it to manufacture more virus.

In recognition of the test as "groundbreaking work toward new pharmaceutical strategies to combat the virus that causes AIDS," the GlaxoSmithKline pharmaceutical company awarded UCSD’s Richard Kornbluth, M.D., Ph.D., with a Drug Discovery and Development Award during a professional meeting last week in Chicago.



Kornbluth, who was senior author of the JBC article, is a UCSD associate professor of medicine and a researcher with the VA San Diego Healthcare System.

Kornbluth explains that once HIV enters a host cell’s DNA, the cell becomes permanently infected after the virus splices its genes into the DNA of the host cell, a process known as "integration."

Drugs now available to treat HIV-infected individuals work by inhibiting enzymes that contribute to the spread of HIV, but no drugs have yet been approved that prevent the virus from integrating its DNA into the host cell.

"If we can find a way to intercept HIV during the integration process, when HIV DNA is spliced into normal cells, we can stop it before the cell is permanently infected," Kornbluth says.

HIV drugs now used to treat patients inhibit reverse transcriptase and protease, two of the three enzymes that play a role in infection. Reverse transcriptase works after HIV has entered a host cell by copying the viruses RNA genome into a DNA form. Protease affects the structure of the virus by cutting viral proteins into short pieces that can be incorporated into new viruses.

The third enzyme, integrase, is part of a group of molecules called a preintegration complex (PIC) that promotes HIV integration into the host cell DNA. The entire PIC moves through a pore in the nucleus of the invaded cell, where integrase inserts genes from the viral DNA into the cell’s chromosomes, which is required for the production of more HIV viruses by the infected cell.

The test developed in the Kornbluth lab will allow scientists and drug developers to search millions of chemical compounds for potential drugs that can inhibit any of the components required for the PIC to integrate, not just drugs that inhibit the enzyme integrase.

"The major way that pharmaceutical companies develop drugs is to screen collections of chemicals, anywhere from 100,000 to three million," Kornbluth says. "Our test will allow them to target the entire PIC which is the actual target a successful drug must attack. We believe that molecular components in the PIC, besides integrase, are critical to whether or not HIV is able to integrate into the host cell DNA."

In addition to its ability to look at the entire PIC, Kornbluth’s test is considerably faster than a test developed in 1987, with results taking 2-3 hours rather than 2-3 days. There’s also increased volume: 100 tests can be done in 2-3 hours, compared to about 30 tests that were run over 2-3 days.

With Kornbluth, authors of the article in JBC were Alexei Brooun, Ph.D., a postdoctoral fellow in Kornbluth’s lab, and Douglas R. Richman, M.D., director of the UCSD AIDS Research Institute and professor of medicine and pathology, UCSD and VA San Diego Healthcare System.

The work was funded by the American Foundation for AIDS Research (amfAR), the National Institutes of Health, the State of California’s Universitywide AIDS Research Program, the UCSD Center for AIDS Research, the Department of Veteran Affairs and the Research Center on AIDS and HIV Infection of the VA San Diego Healthcare System.

| International Science News

More articles from Health and Medicine:

nachricht Routing gene therapy directly into the brain
07.12.2017 | Boston Children's Hospital

nachricht New Hope for Cancer Therapies: Targeted Monitoring may help Improve Tumor Treatment
01.12.2017 | Berliner Institut für Gesundheitsforschung / Berlin Institute of Health (BIH)

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>