Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Science finds new fix for UV-damaged skin in arthritis treatment

04.07.2006
For many women, accumulated sun exposure has already permanently damaged their skin cells, causing them to overproduce pigment that shows up as unsightly dark splotches and uneven skin tone over time. But new research indicates that glucosamine - a compound best known for treating arthritis – can actually help stop the formation of new age spots, and help fade existing ones.

"These findings on glucosamine may impact the way dermatologists treat UV-related skin damage in the future. Right now we have prescription and surgical options, which some people aren't willing to try," says Alexa Kimball, M.D., assistant professor of dermatology, Harvard Medical School and lead researcher on one of the studies testing glucosamine. "It's exciting to see this level of research being done on topical cosmetic applications of glucosamine, and the promising results."

An International Consensus on Glucosamine Skin Benefits In early 2006, a group of leading dermatologists from around the world and Procter & Gamble Beauty scientists convened in Rome to review and discuss the glucosamine data. The panel determined that n-acetyl glucosamine, a more stable form of glucosamine, reduced the amount of melanin in skin cells, meaning there was less excess pigment in the skin to cause age spots. Additionally, the panel concluded that a formulation of n-acetyl glucosamine and niacinamide, a vitamin B derivative, significantly reduced the amount and appearance of hyperpigmentation, age spots and uneven melanin distribution. Researchers paired n-acetyl glucosamine with niacinamide because they knew that niacinamide had similar effects on slowing down pigment production and hypothesized that the two might work better together.

The panel reviewed data from three studies involving the n-acetyl glucosamine /niacinamide formulation. Tissue studies showed a reduction in melanin and an increase in collagen – a key structural protein in skin. Three double-blinded placebo- controlled clinical studies involving more than 200 subjects, including a study supervised by Dr. Kimball, showed improvement in hyperpigmentation and skin tone and a decrease in the size of age spots. The research is set to be presented in July at the "Academy '06" meeting of the American Academy of Dermatology (AAD), and was first presented at the AAD annual meeting in March 2006.

Skin Biology Gives Researchers Clues for Developing New Treatments The interest in glucosamine as a possible treatment comes in part from what scientists already know happens on a cellular level when skin is exposed to UV radiation. Chronic UV exposure can damage melanocytes, cells in the skin responsible for producing melanin, in a variety of different ways. Often, this damage can lead to a loss of cellular control, and the production of chemicals that allow the cells to keep producing more and more melanin – which eventually leads to age spots and uneven discoloration. Additionally, as skin ages, cell turnover slows down and melanin "dust" – microscopic particles of melanin – can become trapped in the upper layers of skin, resulting in a duller appearance.

Researchers are familiar with these processes and that has helped them focus on substances - such as n-acetyl glucosamine - that are known to interrupt the UV-triggered chemical signals that turn on melanin production. Skin care products that utilize signal-blocking ingredients currently exist in the marketplace, but products with n-acetyl glucosamine/niacinamide - which block melanin at two different points in the pigment producing process - are among the newest and most studied.

"Pigmentation is an appearance issue that strikes an emotional chord for women, and even though we're constantly telling our patients about the importance of UV-protection, once the damage is done, we need to be able to provide them with ways to help," says Dr. Kimball. "The level of research and validation on topical cosmetic application of glucosamine will help it stand apart from other ingredients when it comes to improving tone and treating hyperpigmentation."

Shirley Johnson | EurekAlert!
Further information:
http://www.mslpr.com/

More articles from Health and Medicine:

nachricht Antibiotic effective against drug-resistant bacteria in pediatric skin infections
17.02.2017 | University of California - San Diego

nachricht Tiny magnetic implant offers new drug delivery method
14.02.2017 | University of British Columbia

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>