Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U of M study examines kidney stone prevention in astronauts

28.06.2006
Exercise in chamber that simulates gravity may prevent stone formation

As the space shuttle Discovery prepares to launch on July 1, researchers at the University of Minnesota have identified a way for astronauts to reduce their risk of developing kidney stones while in space.

Astronauts lose calcium in their bones and strength in their muscles while in space because of the zero-gravity environment. This calcium can end up in their kidneys, putting them at risk for developing kidney stones.

At least 14 American crew members have developed kidney stones in the last 5 years, and as missions become longer, the number is likely to grow. While astronauts have exercised in space to attempt to combat bone loss, the lack of gravity makes it difficult to achieve enough resistance to maintain their pre-flight fitness levels.

"This becomes a real health concern, as the time astronauts spend in space and living in the space station is extended," said Manoj Monga, M.D., professor of urologic surgery and lead investigator. The study will be published in the July 2006 print issue of the Journal of Urology and is available online now.

Kidney stones are mineral deposits in the kidneys that can travel through the urinary tract, causing intense pain. One of the most common types of kidney stones is caused by the buildup of calcium oxalate.

Researchers studied the effects of exercise in pairs of identical twins, since a portion of a person's risk for developing kidney stones is genetic. The study participants had no history of kidney stones and were placed on standardized diets.

The twins were put on bed rest on a tilted bed that positioned their head lower than their feet to simulate low gravity for 30 days. One twin per pair was randomly selected to exercise (while still reclining) in a chamber that put negative pressure, or resistance on their lower body, and the other twin served as a non-exercising control. The pressure in the chamber was roughly equivalent to what a person would experience running on Earth.

Monga found that the non-exercising study participants had higher levels of urinary calcium than the exercising group, and thus had a greater risk of developing kidney stones. Additionally, many astronauts do not drink enough water while in space, so their urine output is lower, and the food they consume is higher in sodium, which also increases the risk for kidney stone development.

"In combination with hydration therapy, exercise in a machine that simulates gravity could reduce the astronaut's risk of developing kidney stones, a condition that could be particularly painful and lead to an aborted mission," Monga said.

Sara E. Buss | EurekAlert!
Further information:
http://www.umn.edu

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>