Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New materials developed for vascular graft

16.06.2006
Virginia Commonwealth University engineers and scientists have developed a new material that may one day help patients with damaged arteries regenerate new ones.

In the June issue of the journal Biomedical Materials, researchers reported the design and fabrication of a new material to be used for vascular grafts that in the future could ultimately be implanted in patients undergoing coronary artery graft surgery.


A scanning electron micrograph to illustrate the fibrous structure of the tube wall. The fibers are fewer than 500 nanometers in diameter, compared with the average hair shaft, which is 80,000-100,000 nanometers. Photo courtesy of Scott A. Sell/VCU.

The material is a blend of polydioxanone (PDO), a synthetic biodegradable polymer that has been used in suture materials for years, and elastin fibers, used to enhance elasticity and bioactivity of the graft. Elastin, a natural polymer, is also a major component of the arterial wall and is critical to the graft in providing a base for the cells to recognize and interact with the body. Using a technique known as electrospinning, researchers were able to manipulate the PDO-elastin composite into a conduit, or hose, for use as a small diameter vascular graft.

“We have created a vascular graft with a combination of strength and bioactivity – two things we need to maintain and regenerate the graft. Although the body is the best bioreactor for tissue regeneration or wound healing, we hope this new material will be recognized by the body as an environment conducive for regeneration,” said lead author Gary Bowlin, Ph.D., the Harris professor of biomedical engineering in the VCU School of Engineering.

According to Bowlin, the composition of the material reinforces the graft’s mechanical strength, which is critical in order to hold the blood pressure and forces while the regeneration process is taking place. The PDO-elastin blend undergoes slow degradation and causes few adverse reactions compared with previous materials used for the same purpose, he said. The purpose of the new material would be to help a patient regenerate a new artery. If it works as designed the researchers hope that at six months post-surgery, there would be no more synthetic structure left, he said.

“Regeneration needs to be timed just right, and the cells regrowth needs to be strong enough so that the patient’s own artery can take over for the synthetic material and promote regeneration,” Bowlin said. “Additionally, the synthetic material must degrade, because any foreign material in the body for an extended time is susceptible to inflammatory response or even severe infection such as staphylococcus.”

Bowlin and his colleagues are now evaluating how cells respond and interact with the different structures.

For more than 30 years, surgeons have used Teflon as a conduit or “artery” for such operations. Teflon is inert and once implanted in a patient, remains forever. However, this can lead to complications, especially in small diameter grafts in the arms, lower legs and coronary arteries. In addition, synthetic biodegradable polymers that are currently used may be adversely reactive and cause inflammatory responses, which degrades the materials faster and results in poor wound healing.

This work was supported by a grant from the American Heart Association Mid-Atlantic Affiliate.

Bowlin collaborated with Scott A. Sell, B.S.; Michael J. McClure, B.S.; Catherine P. Barnes, M.S.; and Danielle C. Knapp, M.S., all of the VCU School of Engineering’s Division of Biomedical Engineering; David G. Simpson, Ph.D., VCU Department of Anatomy and Neurobiology; and B. H. Walpoth, M.D., who is affiliated with the University Hospital in Geneva, Switzerland.

Sathya Achia-Abraham | EurekAlert!
Further information:
http://www.vcu.edu

More articles from Health and Medicine:

nachricht Hot cars can hit deadly temperatures in as little as one hour
24.05.2018 | Arizona State University

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>