Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Airborne mold spores increase kids' risk for multiple allergies

University of Cincinnati (UC) researchers say exposure to a certain group of fungal spores--abundant in the air that we breathe every day--can make young children more susceptible to developing multiple allergies later in life.

The team found that infants who were exposed to basidiospores and other airborne fungal spores--specifically penicillium/aspergillus and alternaria--early in life were more likely to develop allergies to mold, pollen, dust mites, pet dander and certain foods as they grew older.

This is the first study to show a relationship between specific airborne fungal spores and an increased risk for multiple allergies in children, the UC team reports in an upcoming edition of Pediatric Allergy and Immunology and an early online edition June 14.

A fungus is a plantlike organism that grows by releasing tiny reproductive cells (spores) into the air. Mold is a type of fungus that can grow on any moist surface--including wood, drywall and cement.

Previous allergy studies focused on visible mold or total mold concentrations, not the identification of specific airborne fungal spores. The UC-led study showed that exposure to specific airborne fungal spores may increase allergic reactions and others could help reduce them.

These findings reinforce the idea that not all fungi are created equal, says Tiina Reponen, PhD, professor of environmental health at UC and corresponding author on the study.

"It turns out that the health effects of airborne fungal spores are more complicated than we thought," she says. "It's not enough to look just at total mold in our homes and offices. We need to understand how specific types of mold interact with each other in the environment to affect our respiratory health. Some fungi can have harmful effects on the body, but others may be beneficial."

"There are literally thousands of different types of mold in the air we breathe," adds Melissa Osborne, a graduate of UC's environmental and occupational hygiene program and study lead author. "But because mold exists naturally in the outdoors, it's very difficult to completely remove mold spores from the air."

Osborne conducted this research while pursuing her master's at UC and is currently employed as an environmental consultant at Quantus Analytical, a mold and allergen laboratory and consulting group in Cincinnati.

Using a small air sampling device, the UC research team collected fungal spores from the homes of 144 infants enrolled in the Cincinnati Childhood Allergy and Air Pollution Study (CCAAPS).

The CCAAPS, funded by the National Institute of Environmental Health Sciences, is a five-year study examining the effects of environmental particulates on childhood respiratory health and allergy development.

Air samples were collected for a total of 48 hours in the child's primary activity room and in the child's bedroom during sleep. Samples were analyzed for both total and individual spore counts.

"We found that, at least in children, some fungi may cause allergic sensitization while other fungal types may actually inhibit the development of allergies," explains Osborne.

"But very little is known about how infant allergies to environmental allergens develop," she adds, "and more research is needed before we will fully understand the impact of fungi as an allergen in infants."

If mold is found in the home, the UC team recommends following the Environmental Protection Agency (EPA)-accepted guidelines for removing it. They also say any moisture issues, such as roof or plumbing leaks, should be resolved immediately to avoid mold development. Additional information on household mold issues can be found at

Amanda Harper | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>