Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Airborne mold spores increase kids' risk for multiple allergies

University of Cincinnati (UC) researchers say exposure to a certain group of fungal spores--abundant in the air that we breathe every day--can make young children more susceptible to developing multiple allergies later in life.

The team found that infants who were exposed to basidiospores and other airborne fungal spores--specifically penicillium/aspergillus and alternaria--early in life were more likely to develop allergies to mold, pollen, dust mites, pet dander and certain foods as they grew older.

This is the first study to show a relationship between specific airborne fungal spores and an increased risk for multiple allergies in children, the UC team reports in an upcoming edition of Pediatric Allergy and Immunology and an early online edition June 14.

A fungus is a plantlike organism that grows by releasing tiny reproductive cells (spores) into the air. Mold is a type of fungus that can grow on any moist surface--including wood, drywall and cement.

Previous allergy studies focused on visible mold or total mold concentrations, not the identification of specific airborne fungal spores. The UC-led study showed that exposure to specific airborne fungal spores may increase allergic reactions and others could help reduce them.

These findings reinforce the idea that not all fungi are created equal, says Tiina Reponen, PhD, professor of environmental health at UC and corresponding author on the study.

"It turns out that the health effects of airborne fungal spores are more complicated than we thought," she says. "It's not enough to look just at total mold in our homes and offices. We need to understand how specific types of mold interact with each other in the environment to affect our respiratory health. Some fungi can have harmful effects on the body, but others may be beneficial."

"There are literally thousands of different types of mold in the air we breathe," adds Melissa Osborne, a graduate of UC's environmental and occupational hygiene program and study lead author. "But because mold exists naturally in the outdoors, it's very difficult to completely remove mold spores from the air."

Osborne conducted this research while pursuing her master's at UC and is currently employed as an environmental consultant at Quantus Analytical, a mold and allergen laboratory and consulting group in Cincinnati.

Using a small air sampling device, the UC research team collected fungal spores from the homes of 144 infants enrolled in the Cincinnati Childhood Allergy and Air Pollution Study (CCAAPS).

The CCAAPS, funded by the National Institute of Environmental Health Sciences, is a five-year study examining the effects of environmental particulates on childhood respiratory health and allergy development.

Air samples were collected for a total of 48 hours in the child's primary activity room and in the child's bedroom during sleep. Samples were analyzed for both total and individual spore counts.

"We found that, at least in children, some fungi may cause allergic sensitization while other fungal types may actually inhibit the development of allergies," explains Osborne.

"But very little is known about how infant allergies to environmental allergens develop," she adds, "and more research is needed before we will fully understand the impact of fungi as an allergen in infants."

If mold is found in the home, the UC team recommends following the Environmental Protection Agency (EPA)-accepted guidelines for removing it. They also say any moisture issues, such as roof or plumbing leaks, should be resolved immediately to avoid mold development. Additional information on household mold issues can be found at

Amanda Harper | EurekAlert!
Further information:

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>