Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Vaccines breed viciousness

13.12.2001


Vaccines can drive the evolution of virulent disease.
© Photodisc


Vaccinations may increase death toll.

Inadequate vaccines can the encourage emergence of nastier bugs, placing the unprotected at risk, a new mathematical model shows. The effect could undermine future vaccination programmes.

Many vaccines save people from dying of a disease, but do not stop them carrying and transmitting it. Over a few decades this may cause more virulent strains to evolve, predict Andrew Read and his colleagues of the University of Edinburgh, UK1.



In some situations, such as in areas endemic for malaria, deadlier disease strains could kill more people than vaccination saves. "Most of the time the benefits [of vaccination] will be eroded," says Read.

Vaccines for HIV, and hepatitis B and C "give most cause for concern", says immunologist Charles Bangham, of Imperial College in London. These viruses are difficult for the body’s immune system to eradicate, leaving them time to reproduce and evolve. Tearaway strains of flu also emerge regularly and evade existing vaccines.

Infections that linger in the body are more likely to meet a second bug, explains evolutionary biologist Dieter Ebert from the University of Fribourg in Switzerland. The competition drives pathogens to evolve faster, nastier killing tactics to get the most from their host.

Don’t encourage them

Vaccines that encourage evolution include those that slow a disease-causing organism’s growth or target its harmful toxin. These types are being pursued to fight diseases such as anthrax and malaria. The possibility that these might save individuals but harm populations "has not been considered before", says Ebert, and should be a factor in public-health policy.

Most existing vaccines, such as those for smallpox, polio and measles, are very effective as they use a different strategy. They stimulate a natural immune reaction which either kills off subsequent infections or blocks pathogen reproduction and transmission altogether. Read does not advocate halting such programmes. New vaccines should similarly aim to prevent pathogens getting a toehold, says Bangham; many in the pipeline do not.

Several different vaccines are being developed to fight malaria: results of clinical trials for one that interrupts the life cycle of microorganism Plasmodium falciparum were announced last week2. ’Multivalent vaccines’ that target several different parts of a pathogen or life cycle at once are the better choice, Read suggests.

References

  1. Gandon, S., Mackinnon, M. J., Nee, S. & Read, A. F. Imperfect vaccines and the evolution of pathogen virulence. Nature, 414, 751 - 756, (2001).
  2. Bojang, K. A. et al. Efficacy of RTS,S/AS02 malaria vaccine against Plasmodium falciparum infection in semi-immune adult men in The Gambia: a randomised trial. Lancet, 358, 1927 - 934, (2001).

HELEN PEARSON | © Nature News Service
Further information:
http://www.nature.com/nsu/011213/011213-14.html

More articles from Health and Medicine:

nachricht Usher syndrome: Gene therapy restores hearing and balance
25.09.2017 | Institut Pasteur

nachricht MRI contrast agent locates and distinguishes aggressive from slow-growing breast cancer
25.09.2017 | Case Western Reserve University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>