Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Radiation zaps bystanders

04.12.2001


Radon causes about 17,000 cases of lung cancer in the US each year.
© SPL


Radon may pose a greater cancer threat than has been thought.

Radon damage from irradiated cells spreads to their neighbours, a new study finds1. The result suggests that small amounts of this radioactive gas could cause widespread harm.

The study "is a reason for concern but not panic", says Gerhard Randers-Pehrson of Columbia University, New York, a member of the team that performed the study. "We’re talking about the acceptable level of radon changing perhaps by a factor of two, not 100."



Even this change could mean many more houses currently on the borderline of acceptable limits needing attention. Decaying uranium in granite rocks and soil releases radon.

Where there is a lot of granite, such as in the US Appalachian region, radon dissolved in water can seep through cracks in basement floors to produce potentially dangerous concentrations in homes. Ventilation and filling cracks in basement floors and walls can cut radon levels.

The results so far are for cells in culture. Radon exposure might not have the same effect on bodies, cautions Barry Michael of the Gray Cancer Institute in London. "The mix of cell types in living organisms might lead to a very different picture," he says.

Radon causes about 17,000 lung cancer cases in the United States each year, according to the US National Cancer Institute. Radioactive particles emitted by inhaled radon break DNA in cells, causing mutations that can lead to cancer.

Most estimates of the risk from low-level radon exposure are made by measuring cancer in people exposed to high radon levels, such as uranium mineworkers. Experts tend to assume that a person who receives half as much radiation as another, for example, has half the risk.

But irradiating just 10% of the cells in a culture resulted in nearly as many mutations irradiating them all, the Columbia found. Many cells not directly hit showed mutations, suggesting that simple extrapolation may underestimate the risk of a low dose of radon.

"It seems that when a cell is irradiated, it sends a signal to neighbour cells that causes them to get damaged too," says Randers-Peterson. "We don’t know why this happens."

Michael’s studies, on the other hand, have found that neighbouring cells cause irradiated cells to age, so that they die before becoming cancerous. "We need more research to understand the balance between damaging and protective impacts of low-dose irradiation," he says.

Further study is needed, agrees Randers-Pehrson. But he thinks that health experts should take note of his findings. "The reason we were doing this experiment was to help decide what kind of level is dangerous," he says.

References

  1. Zhou, H. et al. Radiation risk to low fluences of alpha particles may be greater than we thought. Proceedings of the National Academy of Sciences, 98, 14410 - 14415, (2001).

ERICA KLARREICH | © Nature News Service
Further information:
http://www.nature.com/nsu/011206/011206-7.html

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>