Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Radiation zaps bystanders

04.12.2001


Radon causes about 17,000 cases of lung cancer in the US each year.
© SPL


Radon may pose a greater cancer threat than has been thought.

Radon damage from irradiated cells spreads to their neighbours, a new study finds1. The result suggests that small amounts of this radioactive gas could cause widespread harm.

The study "is a reason for concern but not panic", says Gerhard Randers-Pehrson of Columbia University, New York, a member of the team that performed the study. "We’re talking about the acceptable level of radon changing perhaps by a factor of two, not 100."



Even this change could mean many more houses currently on the borderline of acceptable limits needing attention. Decaying uranium in granite rocks and soil releases radon.

Where there is a lot of granite, such as in the US Appalachian region, radon dissolved in water can seep through cracks in basement floors to produce potentially dangerous concentrations in homes. Ventilation and filling cracks in basement floors and walls can cut radon levels.

The results so far are for cells in culture. Radon exposure might not have the same effect on bodies, cautions Barry Michael of the Gray Cancer Institute in London. "The mix of cell types in living organisms might lead to a very different picture," he says.

Radon causes about 17,000 lung cancer cases in the United States each year, according to the US National Cancer Institute. Radioactive particles emitted by inhaled radon break DNA in cells, causing mutations that can lead to cancer.

Most estimates of the risk from low-level radon exposure are made by measuring cancer in people exposed to high radon levels, such as uranium mineworkers. Experts tend to assume that a person who receives half as much radiation as another, for example, has half the risk.

But irradiating just 10% of the cells in a culture resulted in nearly as many mutations irradiating them all, the Columbia found. Many cells not directly hit showed mutations, suggesting that simple extrapolation may underestimate the risk of a low dose of radon.

"It seems that when a cell is irradiated, it sends a signal to neighbour cells that causes them to get damaged too," says Randers-Peterson. "We don’t know why this happens."

Michael’s studies, on the other hand, have found that neighbouring cells cause irradiated cells to age, so that they die before becoming cancerous. "We need more research to understand the balance between damaging and protective impacts of low-dose irradiation," he says.

Further study is needed, agrees Randers-Pehrson. But he thinks that health experts should take note of his findings. "The reason we were doing this experiment was to help decide what kind of level is dangerous," he says.

References

  1. Zhou, H. et al. Radiation risk to low fluences of alpha particles may be greater than we thought. Proceedings of the National Academy of Sciences, 98, 14410 - 14415, (2001).

ERICA KLARREICH | © Nature News Service
Further information:
http://www.nature.com/nsu/011206/011206-7.html

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>