Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

GM Bacterium Helps Destroy Advanced Tumors in Mice

29.11.2001


Generally speaking, we go to great lengths to rid our bodies of foreign bacteria, whether it’s by brushing our teeth, washing our hands or taking antibiotics. But new research suggests that when it comes to treating tumors, we may one day invite the bugs in. According to a study published yesterday in the early online edition of the Proceedings of the National Academy of Sciences, a bacterium that normally resides in soil, dust and dead flesh quickly destroys large tumors in mice when injected along with chemotherapy drugs.



Current cancer treatments are limited in part by their inability to destroy poorly vascularized areas of tumors: radiation requires oxygen to kill cells and chemotherapy drugs demand a blood system to reach their target. Anaerobic bacteria, on the other hand, actually prefer oxygen-free, or hypoxic, environments. Researchers have thus wondered for some time whether such bacteria might prove useful in combating tumors. Now Bert Vogelstein of Johns Hopkins University and his colleagues have shown that they can be. "The idea is to selectively attack these tumors from inside with the bacteria and from the outside with chemotherapy," Vogelstein explains. The team genetically engineered the bacterium Clostridium novyi, producing a toxin-free strain that, when administered with conventional drugs, eliminated nearly half of the advanced tumors in their lab mice within 24 hours. The healthy tissues surrounding the tumors, in contrast, remained intact.

The team’s so-called combination bacteriolytic therapy (COBALT) did have some negative outcomes, however. As many as 45 percent of the mice with the largest tumors died after treatment, presumably because of toxins released by the deteriorating tumor cells. "Any therapy which dramatically shrinks tumors may be subject to this side effect," the authors note. Yet although such tumor lysis is difficult to control in mice, it may be more easily controlled in humans. Still, whether or not COBALT will even work against human tumors at all remains to be seen. Says team member Kenneth Kinzler: "We hope that this research will add a new dimension to cancer treatment but realize that the way tumors respond to treatment in mice can be different than in humans."

Kate Wong | Scientific American
Further information:
http://www.sciam.com/news/112801/2.html

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>