Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DNA repair could reduce sunburn

27.11.2001



An immune system chemical may undo skin damage by sunlight.

A chemical involved in immune-system signalling may be able to reverse some types of skin damage caused by sunlight. It could reduce sunburn by activating DNA-repair mechanisms, a new study suggests, raising the possibility that the chemical might be used to prevent or treat skin cancer1.

High-energy ultraviolet light is thought to promote skin cancer by damaging the DNA within cells. Skin cancer, the most common malignancy among people of Western European descent, strikes over one million people each year in the United States alone.



But when cultured human skin cells were treated with the protein interleukin-12 (IL-12), they were less likely to incur permanent DNA damage or die after being exposed to ultraviolet light, the researchers found. The cells showed as much damage as control cells immediately after exposure, but had significantly less damage several hours later. The same effect was found in the skin of mice treated with IL-12 before being exposed to ultraviolet. This suggests that IL-12 promotes repair rather than blocking ultraviolet rays, as most sunscreens do.

The protein appears to stimulate a cellular editing system that snips damaged pieces of DNA out of the sequence, explains Thomas Schwarz of the University of Münster in Germany, a member of the team that carried out the study.

IL-12 could be a "very attractive" treatment for sun damage, says Schwarz, but it will never take the place of sunscreens, he cautions.

While they are still the best defence against skin cancers, sunscreens are never 100% effective says Julia Newton Bishop, who studies melanoma at St James’s Hospital in Leeds, UK. "So we’re always interested in mechanisms to reduce damage or speed repair."

IL-12 may protect skin by sparking an "SOS response", suggests Barbara Gilchrest, who studies DNA repair at Boston University School of Medicine. Bacteria have long been known to throw their DNA repair system into a higher gear after being exposed to sunlight, so that later exposures are less damaging; in recent years, mammalian skin cells have been found to do the same.

IL-12 is produced after exposure to sunlight, Gilchrest says. Adding it to cells before exposing them to ultraviolet light could "trick the system into thinking it has already seen sun damage so it should get ready," she says.

Damage limitation

IL-12 is not the first chemical found to promote DNA repair after ultraviolet damage. Earlier this year, researchers showed that a bacterial enzyme placed on the skin prevents the formation of new cancerous regions in people highly prone to skin cancer.

But unlike the bacterial enzyme, IL-12, being naturally produced by human cells, would be less likely to trigger allergic responses says Kenneth Kraemer, who works on DNA excision at the National Institutes of Health in Bethesda, Maryland. More work is needed to clarify IL-12’s effects and possible side effects, he adds, but the idea that it could be used as a therapy for skin cancer is "provocative".

IL-12’s protective function is a surprise. It belongs to a class of signalling chemicals called cytokines, which were never suspected of being able to stimulate DNA repair.

The work "opens up a whole new area of investigation," says Kraemer. If IL-12 is involved in DNA repair, he says, other cytokines may be as well. "This is probably the tip of the iceberg."

References

  1. Schwarz, A. et al. Interleukin-12 suppresses ultraviolet radiation-induced apoptosis by inducing DNA repair. Nature Cell Biology, Advance Online Publication, 26 November (2001), DOI: 10.1038/ncb717
  2. Yarosh, D. et al. Effect of topically applied T4 endonuclease V in liposomes on skin cancer in xeroderma pigmentosum: a randomised study. Lancet, 357, 926, (2001).


ERICA KLARREICH | © Nature News Service
Further information:
http://www.nature.com/nsu/
http://www.lancet.com

More articles from Health and Medicine:

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>