Cystic Fibrosis Study Points to Potential Treatment

Researchers have discovered the mechanism by which the genetic defect underlying cystic fibrosis (CF) leads to fatal bacterial colonization of the lungs. The new findings, published today in the early online edition of the Proceedings of the National Academy of Sciences, suggest that an aerosol treatment aimed at balancing pH in lung cells could be developed to stave off or delay such infections.

The most common inherited lethal disorder in Caucasians, CF stems from mutations in a gene that encodes the so-called cystic fibrosis transmembrane conductance regulator (CFTR) protein. Although scientists have known that for some time, exactly how the dysfunctional protein relates to the chronic respiratory infections that characterize the disease has remained a mystery. Enter Jens Poschet of the University of New Mexico and colleagues, who found that the defect results in the excess production of acid in lung cells. This, the team determined, prevents the cells from attaching key sugar molecules to certain proteins dotting their surfaces. The absence of those sugars, in turn, enables bacteria such as Pseudomonas aeruginosa to latch onto the cells much more easily—a prelude to infection.

Importantly, when the researchers restored normal acidity to such cells in vitro, the bacteria could no longer stick to them. “This was an exciting discovery to us, because in the test tube at least we can correct the deficiency with simple maneuvers,” team member Vojo Deretic of the University of New Mexico remarks. “We already have ion pump inhibitors and antacids for treating heartburn,” he adds. “If we can design similar compounds to go to the lungs, we might have a simple solution to greatly improve the health of CF patients.”

Media Contact

Kate Wong Scientific American

All latest news from the category: Health and Medicine

This subject area encompasses research and studies in the field of human medicine.

Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors