Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Trial success for diabetic nerve therapy

01.06.2006


A potentially ground-breaking treatment for nerve damage caused by diabetes has shown promising results in preclinical and early patient trials.



The University of Manchester team has discovered that injection of a novel therapeutic that works by stimulating a person’s genes may prevent nerve damage – primarily to the hands and feet – caused by the disease.

The positive preclinical results – reported in the journal Diabetes – are further evidence that the research could lead to a new treatment for diabetic nerve damage or ’neuropathy’; initial-stage clinical trials on patients in the United States have also been encouraging.


Lead researcher Professor David Tomlinson says the study has massive potential for managing the condition and preventing thousands of foot amputations each year.

"The vast majority of non-traumatic hand and foot amputations carried out in UK hospitals are caused by diabetes and there are currently no treatments available to prevent or slow the progress of nerve disease in diabetic patients," he said.

"Our tests have shown that a single injection of a DNA-binding protein protected nerve function, stimulated nerve growth and prevented tissue damage that in humans can lead to limb loss."

An estimated 50 per cent of patients with long-term diabetes develop some form of neuropathy that can cause numbness and sometimes pain and weakness in the hands, arms, feet and legs. Progression to amputation is not inevitable, but it is always a threat.

Problems may also occur in other organs, including the heart, kidneys, sex organs, eyes and digestive tract.

"Diabetic neuropathy is a major problem in insulin-dependent diabetes, particularly in patients who have had the disease for a period of time," said Professor Tomlinson, who is based in the University’s Faculty of Life Sciences.

"Our approach to gene therapy is quite different to previous attempts at treatment: we use a DNA-binding protein called ZFP TFTM to poke life into the patient’s own genes and produce a growth factor that has a role in nerve protection and regeneration.

"As the data in the paper demonstrate, we have had some striking success."

The US clinical trials – carried out by Professor Tomlinson’s collaborators at biotech firm Sangamo BioSciences Inc – have also been encouraging with the only adverse event reported being mild injection-site reaction in four of the 12 diabetic patients tested, all of which resolved quickly.

"We are delighted by the progress of our clinical programme in diabetic neuropathy and by the reception it has received from the medical and scientific community," said Edward Lanphier, Sangamo’s President and CEO.

"We believe our DNA-binding protein may provide a novel and much-needed therapeutic approach to diabetic neuropathy and optimistically look forward to the next stage of development of this novel therapeutic when phase-two clinical trials start later this year."

The incidence of diabetes, a condition in which the amount of glucose in the blood is too high, is increasing dramatically with the World Health Organisation estimating that some 300 million people worldwide could be affected by 2025.

The causes of diabetic neuropathy are not fully understood but researchers investigating the effect of glucose on nerves believe it is likely to be a combination of factors.

Aeron Haworth | EurekAlert!
Further information:
http://www.manchester.ac.uk

More articles from Health and Medicine:

nachricht Satellites, airport visibility readings shed light on troops' exposure to air pollution
09.12.2016 | Veterans Affairs Research Communications

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>