Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Trial success for diabetic nerve therapy

01.06.2006


A potentially ground-breaking treatment for nerve damage caused by diabetes has shown promising results in preclinical and early patient trials.



The University of Manchester team has discovered that injection of a novel therapeutic that works by stimulating a person’s genes may prevent nerve damage – primarily to the hands and feet – caused by the disease.

The positive preclinical results – reported in the journal Diabetes – are further evidence that the research could lead to a new treatment for diabetic nerve damage or ’neuropathy’; initial-stage clinical trials on patients in the United States have also been encouraging.


Lead researcher Professor David Tomlinson says the study has massive potential for managing the condition and preventing thousands of foot amputations each year.

"The vast majority of non-traumatic hand and foot amputations carried out in UK hospitals are caused by diabetes and there are currently no treatments available to prevent or slow the progress of nerve disease in diabetic patients," he said.

"Our tests have shown that a single injection of a DNA-binding protein protected nerve function, stimulated nerve growth and prevented tissue damage that in humans can lead to limb loss."

An estimated 50 per cent of patients with long-term diabetes develop some form of neuropathy that can cause numbness and sometimes pain and weakness in the hands, arms, feet and legs. Progression to amputation is not inevitable, but it is always a threat.

Problems may also occur in other organs, including the heart, kidneys, sex organs, eyes and digestive tract.

"Diabetic neuropathy is a major problem in insulin-dependent diabetes, particularly in patients who have had the disease for a period of time," said Professor Tomlinson, who is based in the University’s Faculty of Life Sciences.

"Our approach to gene therapy is quite different to previous attempts at treatment: we use a DNA-binding protein called ZFP TFTM to poke life into the patient’s own genes and produce a growth factor that has a role in nerve protection and regeneration.

"As the data in the paper demonstrate, we have had some striking success."

The US clinical trials – carried out by Professor Tomlinson’s collaborators at biotech firm Sangamo BioSciences Inc – have also been encouraging with the only adverse event reported being mild injection-site reaction in four of the 12 diabetic patients tested, all of which resolved quickly.

"We are delighted by the progress of our clinical programme in diabetic neuropathy and by the reception it has received from the medical and scientific community," said Edward Lanphier, Sangamo’s President and CEO.

"We believe our DNA-binding protein may provide a novel and much-needed therapeutic approach to diabetic neuropathy and optimistically look forward to the next stage of development of this novel therapeutic when phase-two clinical trials start later this year."

The incidence of diabetes, a condition in which the amount of glucose in the blood is too high, is increasing dramatically with the World Health Organisation estimating that some 300 million people worldwide could be affected by 2025.

The causes of diabetic neuropathy are not fully understood but researchers investigating the effect of glucose on nerves believe it is likely to be a combination of factors.

Aeron Haworth | EurekAlert!
Further information:
http://www.manchester.ac.uk

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>