Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers open door to potential treatments for type 2 diabetes


Researchers funded by the Canadian Institutes of Health Research (CIHR) and the Canadian Diabetes Association (CDA) have identified an unsuspected role of a protein named SHP-1 that could constitute a new therapeutic path against Type 2 Diabetes.

Under the direction of professor André Marette (Laval University), Nicole Beauchemin (McGill University), Martin Oliver (McGill University Health Centre) and Katherine Siminovitch (University of Toronto) were part of a Canadian and American team which published an article in the May issue of Nature Medicine that explains the role of SHP-1 in the control of blood glucose.

The researchers already knew that SHP-1 played a role in regulating the immune system. However, no one had previously taken the time to verify if this protein was involved in the regulation of metabolism. This is precisely what this team of Canadian and American researchers did, thanks to a series of mutant or genetically modified mice producing little or no SHP-1.

"Our results indicate that these mice are extremely sensitive to insulin and, consequently, they are very effective in metabolising glucose at the level of the liver and the muscles," notes André Marette. In addition, the researchers highlighted that SHP-1 inhibits the decomposition of insulin by the liver. "This could explain the increase in the insulin concentrations of certain metabolic disorders associated with obesity," indicates the researcher.

"The results of Andre Marette and his team represent an important step in the development of a new therapeutic approach in the fight against diabetes. Advances in the treatment of diabetes are needed to improve the lives of the more than two million Canadians already affected by it and the many more who will develop the disease in the years to come. The study is a perfect example of the potential benefits of investing in health research," says Dr. Diane Finegood, based in Vancouver and Scientific Director of the CIHR Institute of Nutrition, Metabolism and Diabetes.

"By inhibiting the activity of SHP-1, it would perhaps be possible to restore better control of blood glucose," suggests professor Marette. The difficulty, however, is to reach that point without blocking the essential part played by this protein in the immune system. The SHP-1 protein is present in humans, but its role in the regulation of the metabolism of glucose and in the development of Type 2 Diabetes remains to be shown.

"Good glucose control is essential for managing diabetes and preventing the debilitating complications associated with diabetes," says Dr. Paula Dworatzek, Senior Research Associate, Canadian Diabetes Association. "We congratulate Dr. Marette and his team for these initial findings, which will pave the way for his team and others to pursue a potential new therapy in the management of diabetes."

Jasmine Sharma | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Inflammation Triggers Unsustainable Immune Response to Chronic Viral Infection
24.10.2016 | Universität Basel

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

New method increases energy density in lithium batteries

24.10.2016 | Power and Electrical Engineering

International team discovers novel Alzheimer's disease risk gene among Icelanders

24.10.2016 | Life Sciences

New bacteria groups, and stunning diversity, discovered underground

24.10.2016 | Life Sciences

More VideoLinks >>>