Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers start new clinical trial to examine ways to improve treatment of uterine fibroids

30.05.2006


Uterine fibroids affect the health and quality of life of more than six million women in the US every year



Researchers at the University of Pennsylvania School of Medicine are working on ways to improve the results of a non-surgical method to treat fibroids. They are examining the overall effectiveness of different agents used to destroy uterine fibroids - a discovery that could lead to more answers about the durability of a procedure called Uterine Fibroid Embolization (UFE). It’s already been established throughout the medical community that, after a decade, UFE works to relieve the symptoms of fibroids. Now, in this new study, investigators want to learn how to optimize the procedure, by running a comparison of materials used during it.

"We already know that UFE has an 85-90% success rate, offering less complications and a shorter recovery time than surgical options," Richard Shlansky-Goldberg, MD, Interventional Radiologist at Penn and Principal Investigator of this study, explains, "So in 2006, the question becomes, now that we know the procedure is effective and durable, ’Which product would be better?’"


Uterine fibroids are benign (non-cancerous) tumors of the uterus that affect an estimated 20-40% of women, and for many, cause symptoms disrupting the quality of their lives. Uterine Fibroids affect more than six million women in the U.S. each year. The exact reason uterine fibroids (the most common type of abnormal growth in the uterus) develop is unknown, but medical researchers have associated the condition with genetics and hormones. If left untreated, uterine fibroids can cause infertility.

The treatment for uterine fibroids depends upon the size and location of the fibroids and the severity of symptoms. Uterine fibroid embolization (UFE), also known as uterine artery embolization (UAE), is a minimally invasive alternative to a hysterectomy and is a proven way to treat fibroids and relieve its symptoms of heavy bleeding, pressure, pain, and excessive urination.

Interventional radiologists don’t actually remove the fibroids during the UFE procedure. They shut them down and gradually shrink them, by blocking the blood supply to the fibroids. They do this by using a catheter to inject embolic agents (tiny plastic or sponge-like particles) into the artery, to "dam up" the blood flow to the fibroids.

During this trial at Penn, several researchers will utilize two different embolic agents, comparing the outcomes in patients. 24 hours after each procedure, they will conduct an MRI to see how much fibroid tissue is destroyed. They’ll look again, when the patient leaves the hospital. Shlansky-Goldberg adds, "We hope to answer two questions. One - In looking at the different outcomes of each particle, does one do a more effective job of eliminating fibroids? And two -- What does the uterus look like immediately after the UFE procedure and then later, after three months?"

This is a randomized, single-center study comparing Contour SE Microspheres to Embosphere Microspheres for treating symptomatic uterine fibroids with UFE. The head-to-head study at Penn, funded by Boston Scientific, will involve 60 patients. Penn is still enrolling patients in the study.

The clinical trial is expected to last about nine months.

Susanne Hartman | EurekAlert!
Further information:
http://www.uphs.upenn.edu
http://www.pennhealth.com/int_rad/health_info/
http://www.bostonscientific.com

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>