Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers start new clinical trial to examine ways to improve treatment of uterine fibroids

30.05.2006


Uterine fibroids affect the health and quality of life of more than six million women in the US every year



Researchers at the University of Pennsylvania School of Medicine are working on ways to improve the results of a non-surgical method to treat fibroids. They are examining the overall effectiveness of different agents used to destroy uterine fibroids - a discovery that could lead to more answers about the durability of a procedure called Uterine Fibroid Embolization (UFE). It’s already been established throughout the medical community that, after a decade, UFE works to relieve the symptoms of fibroids. Now, in this new study, investigators want to learn how to optimize the procedure, by running a comparison of materials used during it.

"We already know that UFE has an 85-90% success rate, offering less complications and a shorter recovery time than surgical options," Richard Shlansky-Goldberg, MD, Interventional Radiologist at Penn and Principal Investigator of this study, explains, "So in 2006, the question becomes, now that we know the procedure is effective and durable, ’Which product would be better?’"


Uterine fibroids are benign (non-cancerous) tumors of the uterus that affect an estimated 20-40% of women, and for many, cause symptoms disrupting the quality of their lives. Uterine Fibroids affect more than six million women in the U.S. each year. The exact reason uterine fibroids (the most common type of abnormal growth in the uterus) develop is unknown, but medical researchers have associated the condition with genetics and hormones. If left untreated, uterine fibroids can cause infertility.

The treatment for uterine fibroids depends upon the size and location of the fibroids and the severity of symptoms. Uterine fibroid embolization (UFE), also known as uterine artery embolization (UAE), is a minimally invasive alternative to a hysterectomy and is a proven way to treat fibroids and relieve its symptoms of heavy bleeding, pressure, pain, and excessive urination.

Interventional radiologists don’t actually remove the fibroids during the UFE procedure. They shut them down and gradually shrink them, by blocking the blood supply to the fibroids. They do this by using a catheter to inject embolic agents (tiny plastic or sponge-like particles) into the artery, to "dam up" the blood flow to the fibroids.

During this trial at Penn, several researchers will utilize two different embolic agents, comparing the outcomes in patients. 24 hours after each procedure, they will conduct an MRI to see how much fibroid tissue is destroyed. They’ll look again, when the patient leaves the hospital. Shlansky-Goldberg adds, "We hope to answer two questions. One - In looking at the different outcomes of each particle, does one do a more effective job of eliminating fibroids? And two -- What does the uterus look like immediately after the UFE procedure and then later, after three months?"

This is a randomized, single-center study comparing Contour SE Microspheres to Embosphere Microspheres for treating symptomatic uterine fibroids with UFE. The head-to-head study at Penn, funded by Boston Scientific, will involve 60 patients. Penn is still enrolling patients in the study.

The clinical trial is expected to last about nine months.

Susanne Hartman | EurekAlert!
Further information:
http://www.uphs.upenn.edu
http://www.pennhealth.com/int_rad/health_info/
http://www.bostonscientific.com

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>