Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers start new clinical trial to examine ways to improve treatment of uterine fibroids

30.05.2006


Uterine fibroids affect the health and quality of life of more than six million women in the US every year



Researchers at the University of Pennsylvania School of Medicine are working on ways to improve the results of a non-surgical method to treat fibroids. They are examining the overall effectiveness of different agents used to destroy uterine fibroids - a discovery that could lead to more answers about the durability of a procedure called Uterine Fibroid Embolization (UFE). It’s already been established throughout the medical community that, after a decade, UFE works to relieve the symptoms of fibroids. Now, in this new study, investigators want to learn how to optimize the procedure, by running a comparison of materials used during it.

"We already know that UFE has an 85-90% success rate, offering less complications and a shorter recovery time than surgical options," Richard Shlansky-Goldberg, MD, Interventional Radiologist at Penn and Principal Investigator of this study, explains, "So in 2006, the question becomes, now that we know the procedure is effective and durable, ’Which product would be better?’"


Uterine fibroids are benign (non-cancerous) tumors of the uterus that affect an estimated 20-40% of women, and for many, cause symptoms disrupting the quality of their lives. Uterine Fibroids affect more than six million women in the U.S. each year. The exact reason uterine fibroids (the most common type of abnormal growth in the uterus) develop is unknown, but medical researchers have associated the condition with genetics and hormones. If left untreated, uterine fibroids can cause infertility.

The treatment for uterine fibroids depends upon the size and location of the fibroids and the severity of symptoms. Uterine fibroid embolization (UFE), also known as uterine artery embolization (UAE), is a minimally invasive alternative to a hysterectomy and is a proven way to treat fibroids and relieve its symptoms of heavy bleeding, pressure, pain, and excessive urination.

Interventional radiologists don’t actually remove the fibroids during the UFE procedure. They shut them down and gradually shrink them, by blocking the blood supply to the fibroids. They do this by using a catheter to inject embolic agents (tiny plastic or sponge-like particles) into the artery, to "dam up" the blood flow to the fibroids.

During this trial at Penn, several researchers will utilize two different embolic agents, comparing the outcomes in patients. 24 hours after each procedure, they will conduct an MRI to see how much fibroid tissue is destroyed. They’ll look again, when the patient leaves the hospital. Shlansky-Goldberg adds, "We hope to answer two questions. One - In looking at the different outcomes of each particle, does one do a more effective job of eliminating fibroids? And two -- What does the uterus look like immediately after the UFE procedure and then later, after three months?"

This is a randomized, single-center study comparing Contour SE Microspheres to Embosphere Microspheres for treating symptomatic uterine fibroids with UFE. The head-to-head study at Penn, funded by Boston Scientific, will involve 60 patients. Penn is still enrolling patients in the study.

The clinical trial is expected to last about nine months.

Susanne Hartman | EurekAlert!
Further information:
http://www.uphs.upenn.edu
http://www.pennhealth.com/int_rad/health_info/
http://www.bostonscientific.com

More articles from Health and Medicine:

nachricht Routing gene therapy directly into the brain
07.12.2017 | Boston Children's Hospital

nachricht New Hope for Cancer Therapies: Targeted Monitoring may help Improve Tumor Treatment
01.12.2017 | Berliner Institut für Gesundheitsforschung / Berlin Institute of Health (BIH)

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>