Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technology detects risks of drugs to heart sooner

29.05.2006


A new technology to enable pharmaceutical companies to determine more effectively, and earlier on in clinical trials, whether an experimental drug is toxic to the heart has taken an important step toward the marketplace.

The University of Rochester Medical Center (URMC) and iCardiac Technologies, Inc. have signed an exclusive agreement to commercialize software developed by biomedical engineer Jean-Philippe Couderc, Ph.D., that provides a more accurate and reliable method to analyze data from electrocardiograms (ECG) and other types of heart monitors to determine whether a drug is toxic to the heart.

The technology consists of software known as COMPAS – which stands for Comprehensive Analysis of Repolarization Signal – that allows researchers to target and evaluate specific data produced by ECGs called the QT interval, in addition to other advanced measurements intended to identify specific risks associated with a new drug. The QT interval measures the process of ventricular Repolarization, the period between the heart’s contraction and recovery phase. While the period lasts only a fraction of a second, it represents an important determinant of a drug’s safety.



"Drug-induced prolongation of the QT interval is a critical indicator of toxicity," said Couderc. "We know that individuals with an abnormally prolonged QT interval are at far greater risk for developing fatal arrhythmias and sudden cardiac death. Consequently, effective and precise measurement of QT interval, which COMPAS provides, is an effective tool in the assessment of cardiovascular toxicity. Further, the COMPAS software will enable iCardiac Technologies to also focus on the development and deployment of additional ECG markers, which are even more specific and sensitive than traditional QT interval measurements for determining cardiac toxicity."

While there are several potential uses for this technology, the most immediate application is in clinical trials. Prolongation of the QT interval is the most common cause of drug withdrawal from the market and delays in regulatory approval. In the aftermath of the withdrawal of Vioxx and other Cox-2 inhibitor drugs over concerns that they may cause heart attacks or stroke, the FDA has proposed guidelines that call upon the pharmaceutical industry to develop better measurement methods for drug safety assessment.

In response, pharmaceutical companies are in the process of investing significant resources in research that will allow them to identify cardiac toxicity at early stages of drug testing. There is also a tremendous economic incentive: It is estimated that it costs, on average, $900 million to bring a new drug from the laboratory to the doctor’s office. This new scrutiny impacts large classes of drugs, such as antibiotics, weight loss, anti-psychotic medications, heartburn medications, and some cancer and heart disease therapies, some of which have been pulled from the market or limited in use due to their tendency to prolong the QT interval.

COMPAS was designed to accurately identify ECG abnormalities, while taking into consideration other factors that may influence a person’s heart activity, such as eating and stress. In fact, the FDA has purchased a license to the COMPAS software to evaluate its unique capabilities.

The new agreement pairs iCardiac Technologies – a newly established Rochester-based company which is positioning itself as the leader in cardiac safety analytics to support pharmaceutical, biotechnology, medical device and contract research companies – with technology developed by the University’s Heart Research Follow-up Program, an international leader in cardiovascular research.

"We are extremely pleased to be working with the University of Rochester, one of the premier institutions in the world for cardiac safety," said Alex Zapesochny, president and chief operating officer of iCardiac Technologies. "The Heart Research Follow-up Program at the University of Rochester has focused on researching key challenges in this area for over 25 years and iCardiac is now positioned as a leader in this field due to the licensing of this core technology."

About iCardiac Technologies, Inc.

iCardiac Technologies, Inc., headquartered in Rochester, N.Y., is a leading provider of advanced cardiac safety analysis technologies. The company evolved from research carried out at the Heart Research Follow-up Program at the University of Rochester. The company’s technology provides more rigorous characterization of the cardiac safety profiles of in-development and on-market drugs. This allows iCardiac’s customers to both accelerate drug development as well as bring compounds forward in clinical trials with more confidence about their cardiac safety. Additionally, the company’s core technology has applications in ECG-based cardiac diagnostics and medical devices.

About URMC’s Heart Research Follow-up Program

The Heart Research Follow-up Program, which is funded in part by the National Institutes of Health, is a national and international leader in the science of heart arrhythmias and a rare genetic condition associated with an abnormal QT interval, called the congenital Long QT Syndrome (LQTS). The University keeps an International Registry for LQTS and follows thousands of families who have this inherited condition. One of the genetic forms of the QT prolongation syndrome is similar to the drug-induced syndrome, and the University’s work focuses on developing the tools to identify individuals with either condition.

Mark Michaud | EurekAlert!
Further information:
http://www.urmc.rochester.edu

More articles from Health and Medicine:

nachricht Usher syndrome: Gene therapy restores hearing and balance
25.09.2017 | Institut Pasteur

nachricht MRI contrast agent locates and distinguishes aggressive from slow-growing breast cancer
25.09.2017 | Case Western Reserve University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>