Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technology detects risks of drugs to heart sooner

29.05.2006


A new technology to enable pharmaceutical companies to determine more effectively, and earlier on in clinical trials, whether an experimental drug is toxic to the heart has taken an important step toward the marketplace.

The University of Rochester Medical Center (URMC) and iCardiac Technologies, Inc. have signed an exclusive agreement to commercialize software developed by biomedical engineer Jean-Philippe Couderc, Ph.D., that provides a more accurate and reliable method to analyze data from electrocardiograms (ECG) and other types of heart monitors to determine whether a drug is toxic to the heart.

The technology consists of software known as COMPAS – which stands for Comprehensive Analysis of Repolarization Signal – that allows researchers to target and evaluate specific data produced by ECGs called the QT interval, in addition to other advanced measurements intended to identify specific risks associated with a new drug. The QT interval measures the process of ventricular Repolarization, the period between the heart’s contraction and recovery phase. While the period lasts only a fraction of a second, it represents an important determinant of a drug’s safety.



"Drug-induced prolongation of the QT interval is a critical indicator of toxicity," said Couderc. "We know that individuals with an abnormally prolonged QT interval are at far greater risk for developing fatal arrhythmias and sudden cardiac death. Consequently, effective and precise measurement of QT interval, which COMPAS provides, is an effective tool in the assessment of cardiovascular toxicity. Further, the COMPAS software will enable iCardiac Technologies to also focus on the development and deployment of additional ECG markers, which are even more specific and sensitive than traditional QT interval measurements for determining cardiac toxicity."

While there are several potential uses for this technology, the most immediate application is in clinical trials. Prolongation of the QT interval is the most common cause of drug withdrawal from the market and delays in regulatory approval. In the aftermath of the withdrawal of Vioxx and other Cox-2 inhibitor drugs over concerns that they may cause heart attacks or stroke, the FDA has proposed guidelines that call upon the pharmaceutical industry to develop better measurement methods for drug safety assessment.

In response, pharmaceutical companies are in the process of investing significant resources in research that will allow them to identify cardiac toxicity at early stages of drug testing. There is also a tremendous economic incentive: It is estimated that it costs, on average, $900 million to bring a new drug from the laboratory to the doctor’s office. This new scrutiny impacts large classes of drugs, such as antibiotics, weight loss, anti-psychotic medications, heartburn medications, and some cancer and heart disease therapies, some of which have been pulled from the market or limited in use due to their tendency to prolong the QT interval.

COMPAS was designed to accurately identify ECG abnormalities, while taking into consideration other factors that may influence a person’s heart activity, such as eating and stress. In fact, the FDA has purchased a license to the COMPAS software to evaluate its unique capabilities.

The new agreement pairs iCardiac Technologies – a newly established Rochester-based company which is positioning itself as the leader in cardiac safety analytics to support pharmaceutical, biotechnology, medical device and contract research companies – with technology developed by the University’s Heart Research Follow-up Program, an international leader in cardiovascular research.

"We are extremely pleased to be working with the University of Rochester, one of the premier institutions in the world for cardiac safety," said Alex Zapesochny, president and chief operating officer of iCardiac Technologies. "The Heart Research Follow-up Program at the University of Rochester has focused on researching key challenges in this area for over 25 years and iCardiac is now positioned as a leader in this field due to the licensing of this core technology."

About iCardiac Technologies, Inc.

iCardiac Technologies, Inc., headquartered in Rochester, N.Y., is a leading provider of advanced cardiac safety analysis technologies. The company evolved from research carried out at the Heart Research Follow-up Program at the University of Rochester. The company’s technology provides more rigorous characterization of the cardiac safety profiles of in-development and on-market drugs. This allows iCardiac’s customers to both accelerate drug development as well as bring compounds forward in clinical trials with more confidence about their cardiac safety. Additionally, the company’s core technology has applications in ECG-based cardiac diagnostics and medical devices.

About URMC’s Heart Research Follow-up Program

The Heart Research Follow-up Program, which is funded in part by the National Institutes of Health, is a national and international leader in the science of heart arrhythmias and a rare genetic condition associated with an abnormal QT interval, called the congenital Long QT Syndrome (LQTS). The University keeps an International Registry for LQTS and follows thousands of families who have this inherited condition. One of the genetic forms of the QT prolongation syndrome is similar to the drug-induced syndrome, and the University’s work focuses on developing the tools to identify individuals with either condition.

Mark Michaud | EurekAlert!
Further information:
http://www.urmc.rochester.edu

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>