Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Malaria, potato famine pathogen share surprising trait

29.05.2006


Two wildly different pathogens – one that infects vegetables, the other infecting humans - essentially use the same protein code to get their disease-causing proteins into the cells of their respective hosts.



That’s what researchers from Ohio State and Northwestern universities report in a study published in the current issue of the journal PLoS Pathogens. The scientists were surprised to learn that the pathogen that causes malaria in humans and the microbe that caused the Irish potato famine use identical protein signals to start an infection.

“I don’t think anyone expected this,” said Sophien Kamoun, a study co-author and an associate professor of plant pathology at Ohio State’s Ohio Agricultural Research and Development Center in Wooster. “These are very different pathogens, and we never realized that there might be some similarities between them.”


Kamoun says not to worry – there’s no chance that the potato pathogen will jump to humans, nor is it likely that the malaria parasite will start infecting plants.

However, he said it’s feasible to think that one day researchers could develop a drug with a dual purpose – one that would stop both Plasmodium falciparum, which causes malaria, and Phytophthora infestans, the microbe that triggers late potato blight in vegetables including potatoes, soybeans and tomatoes.

“It sounds crazy, but it’s not totally ridiculous to consider such a drug,” said Kamoun, who is an expert on the Phytophthora group of pathogens. He conducted the study with lead author Kasturi Haldar, of Northwestern, and with colleagues from both Ohio State and Northwestern.

Each year, malaria kills more than one million people – mostly young African children – and Phytophthora pathogens devastate a wide range of food and commercial crops.

The researchers swapped a small sequence of proteins, called the leader sequence, in P. falciparum with the leader sequence of P. infestans. A leader sequence is a group of about 20 to 30 amino acids on a protein secreted by the parasite. This sequence contains instructions on how to enter, and therefore start infecting, a plant or animal cell.

In laboratory experiments, the researchers infected human red blood cells with the modified malarial pathogen.

Results showed that malaria proteins could just as effectively enter and infect a cell when it contained the P. infestans leader sequence instead of its own.

“Our findings show that very distinct microbes can share similar strategies for delivering toxic proteins to their targets,” Kamoun said.

About a year and a half ago, Kamoun and his group at Ohio State read studies conducted by the Northwestern researchers that described the leader sequence of the malaria parasite. The similarity between this and the leader sequence of P. infestans was remarkable, he said.

“So we decided to collaborate and see if the sequences were not just similar, but also functionally the same,” he said. “It turned out that they were. But although the mechanism of getting virulence proteins into a host cell is very similar, the infection-causing proteins that are delivered to a host are completely different.”

To Kamoun’s knowledge, this is the first paper to show that such dissimilar pathogens of this type - both are eukaryotic organisms – share a remarkably similar trait. He and his colleagues aren’t sure how to explain this phenomenon, as these pathogens belong to distinctly different evolutionary groups.

This work was supported by grants from the National Institutes of Health and by a National Science Foundation’s Plant Genome grant.

Sophien Kamoun | EurekAlert!
Further information:
http://www.osu.edu

More articles from Health and Medicine:

nachricht Light beam replaces blood test during heart surgery
28.02.2017 | University of Central Florida

nachricht Cells adapt ultra-rapidly to zero gravity
28.02.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Scientists reach back in time to discover some of the most power-packed galaxies

28.02.2017 | Physics and Astronomy

Nano 'sandwich' offers unique properties

28.02.2017 | Materials Sciences

Light beam replaces blood test during heart surgery

28.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>