Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Innovations needed to monitor kidney health

26.05.2006


Doctor Harry Holthöfer, M.D., Ph.D, at the University of Helsinki, Finland, coordinates a new EU-funded project, which aims to develop new diagnostic approaches for early identification of patients at high risk of rapid loss of kidney function. The project links together researchers from Finland, the Netherlands and Switzerland and four SMEs from Finland, the Netherlands and Italy. The EU has granted 4.4 million euro funding for this project.



Chronic kidney disease (CKD) is an increasing health threat in Europe. Presently already 12 % of population suffers from some degree of CKD. The most immediate challenge is to better understand the connection between CKD, diabetes and cardiovascular risks. The risk of sudden death in cardiovascular causes is 2-4 times higher in diabetics while diabetics with kidney damage increases this risk up to 100 times of that of the general population. Moreover, more than 70 % of CKD patients die before achieving the specific CKD treatments including dialysis and transplantation.

With current trends of CKD and diabetes increase, specific treatments will further escape the escalating needs. Similarly, management of the cardiovascular consequences of CKD will be untolerable for any health care systems because of cost, loss of active working years and, most importantly, due to individual suffering.


Better predictive diagnostics should aim at early detection of those at risk of kidney loss and targeting of already presently available effective therapies properly. However, only strong basic research can lead to better understanding mechanisms and pathways involved and thus improvements in targeted treatments.

“We will utilize the latest knowledge on the pathophysiology of diabetic nephropathy and newly identified urinary markers of diabetic kidney damage to develop a predictive diagnostic test to follow disease progression”, Dr. Holthöfer says.

Biomarkers identified, in particular those preceding the development of diabetic kidney damage during the pre-microalbuminuric stage, will be evaluated in patient sample material banks collected as a wide, well organized national effort relying on voluntary contributions of patients and health care professionals alike. This material is used by the researchers to find additional markers from diabetic urines, and identify new metabolic end products useful in diagnostics.

Two separate approaches will be used to develop diagnostic tests, one based on nanobead technology and the other on a multiplexing platform allowing combination of several measurables into a single test. Both technologies will utilize antibody capture methods and newly developed antibody libraries. This will translate into early identification of patients at high risk of rapid loss of kidney function. The validation of the diagnostic tests emerges form the use of the largest European urine, serum and DNA databases of diabetic nephropathy with the meticulously collected follow-up samples.

Subsequent steps of the test development include premarketing evaluation, transfer of the test into patient use, market and competitor analyses and search for best market channels for the test in international markets by SMEs.

This approach directly aiming at developing a clinical urinary test will be supported by extensive basic research on the mechanisms and biomarkers of diabetic nephropathy at the level of the kidney. These include a novel method of in vivo biotinylation and state of the art proteomics on kidney samples during the development of experimental diabetic nephropathy, Dr. Holthöfer tells.

Partners:
University of Helsinki, Finland, coordinator
Folkhälsan Research Center, Finland
University of Leiden, the Netherlands
Swiss Institute of Technology, Switzerland
Future Diagnostics Inc, the Netherlands
Philips Research Center, the Netherlands
United Laboratories, Finland
Philogen Inc, Italy

Paivi Lehtinen | alfa
Further information:
http://www.helsinki.fi

More articles from Health and Medicine:

nachricht Speed data for the brain’s navigation system
06.12.2016 | Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE)

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>