Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Innovations needed to monitor kidney health

26.05.2006


Doctor Harry Holthöfer, M.D., Ph.D, at the University of Helsinki, Finland, coordinates a new EU-funded project, which aims to develop new diagnostic approaches for early identification of patients at high risk of rapid loss of kidney function. The project links together researchers from Finland, the Netherlands and Switzerland and four SMEs from Finland, the Netherlands and Italy. The EU has granted 4.4 million euro funding for this project.



Chronic kidney disease (CKD) is an increasing health threat in Europe. Presently already 12 % of population suffers from some degree of CKD. The most immediate challenge is to better understand the connection between CKD, diabetes and cardiovascular risks. The risk of sudden death in cardiovascular causes is 2-4 times higher in diabetics while diabetics with kidney damage increases this risk up to 100 times of that of the general population. Moreover, more than 70 % of CKD patients die before achieving the specific CKD treatments including dialysis and transplantation.

With current trends of CKD and diabetes increase, specific treatments will further escape the escalating needs. Similarly, management of the cardiovascular consequences of CKD will be untolerable for any health care systems because of cost, loss of active working years and, most importantly, due to individual suffering.


Better predictive diagnostics should aim at early detection of those at risk of kidney loss and targeting of already presently available effective therapies properly. However, only strong basic research can lead to better understanding mechanisms and pathways involved and thus improvements in targeted treatments.

“We will utilize the latest knowledge on the pathophysiology of diabetic nephropathy and newly identified urinary markers of diabetic kidney damage to develop a predictive diagnostic test to follow disease progression”, Dr. Holthöfer says.

Biomarkers identified, in particular those preceding the development of diabetic kidney damage during the pre-microalbuminuric stage, will be evaluated in patient sample material banks collected as a wide, well organized national effort relying on voluntary contributions of patients and health care professionals alike. This material is used by the researchers to find additional markers from diabetic urines, and identify new metabolic end products useful in diagnostics.

Two separate approaches will be used to develop diagnostic tests, one based on nanobead technology and the other on a multiplexing platform allowing combination of several measurables into a single test. Both technologies will utilize antibody capture methods and newly developed antibody libraries. This will translate into early identification of patients at high risk of rapid loss of kidney function. The validation of the diagnostic tests emerges form the use of the largest European urine, serum and DNA databases of diabetic nephropathy with the meticulously collected follow-up samples.

Subsequent steps of the test development include premarketing evaluation, transfer of the test into patient use, market and competitor analyses and search for best market channels for the test in international markets by SMEs.

This approach directly aiming at developing a clinical urinary test will be supported by extensive basic research on the mechanisms and biomarkers of diabetic nephropathy at the level of the kidney. These include a novel method of in vivo biotinylation and state of the art proteomics on kidney samples during the development of experimental diabetic nephropathy, Dr. Holthöfer tells.

Partners:
University of Helsinki, Finland, coordinator
Folkhälsan Research Center, Finland
University of Leiden, the Netherlands
Swiss Institute of Technology, Switzerland
Future Diagnostics Inc, the Netherlands
Philips Research Center, the Netherlands
United Laboratories, Finland
Philogen Inc, Italy

Paivi Lehtinen | alfa
Further information:
http://www.helsinki.fi

More articles from Health and Medicine:

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

nachricht Prospect for more effective treatment of nerve pain
20.02.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Tune your radio: galaxies sing while forming stars

21.02.2017 | Physics and Astronomy

Improved Speech Intelligibility and Automatic Speech-to-Text Conversion for Call Centers

21.02.2017 | Trade Fair News

36 big data research projects

21.02.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>