Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Turning the tables on drug discovery

26.05.2006


EUREKA project E! 2314 O’SCREEN reverses the traditional screening process used to discover potentially active new pharmaceutical compounds. Testing single, targeted molecules rather than tens of thousands it promises vastly increased efficiency in drug discovery.



Until now, new molecules with the potential to be developed as drugs have been discovered by screening thousands of candidate new molecules and developing those showing potential activity in some therapeutic area. But the process is extremely expensive and wasteful. Now, a radical new option couples this unique approach with bioinformatics resources.

Reverse approach


Project coordinator Dr Jean-Yves Berthon from French pharmaceuticals company Greentech explains the way this ‘reverse approach’ developed. “We have a large database of 30,000 plants, with information on their botany, physiology, chemical components and their applications; also another database on 300,000 natural molecules coming from plants. We reasoned that if we had an idea of what molecules would have a particular pharmaceutical effect, we could find a natural source in our databases.” Greentech’s partner in the project was Drug Discovery Ltd, part of the natural products business of the Strathclyde Institute for Drug Research in Scotland, which has focused on identifying lead molecules from natural sources for drug development.

The method starts with knowledge of the key enzymes involved in particular diseases, such as acetylcholinesterase in the case of Alzheimer’s disease. Project team biochemists researched and identified what chemical entities (ligands) could be attached to the enzyme to alter its behaviour. They then consulted the databases of plant-derived molecules and plants to discover the natural sources of the ligands which could influence the enzyme. Identified in this way substances can then be extracted from the identified plant material and subjected to early-stage potentiality testing.

Fast and effective

Once potential compounds are confirmed, they can be supplied to pharmaceutical companies under licence in an easy-to-use condition, coated onto microplates ready for further studies and the development of the drug substance. Developing new drugs in this way is much faster than using conventional screening. It is also possible to reduce the side effects of conventionally-developed drugs - as the potential drug has been designed to achieve a particular change on the enzyme involved in the illness, and is less likely to interact with other systems.

The success generated by this EUREKA project has enabled Greentech to found Greenpharma, a new company entirely dedicated to pharmaceutical discovery. The future looks even brighter as Greentech itself has tripled its turnover by applying the technique to cosmetics and nutraceuticals.

Catherine Shiels | alfa
Further information:
http://www.eureka.be/inaction/viewSuccessStory.do?docid=1719838

More articles from Health and Medicine:

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Better equipped in the fight against lung cancer
16.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>