Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dartmouth researchers test new technique to examine breast tissue

23.05.2006


Dartmouth physicians and engineers are collaborating to test new imaging techniques to find breast abnormalities, including cancer. Results from their latest study, which involved magnetic resonance-guided near-infrared imaging, appear in the May 22 issue of the Proceedings of the National Academy of Sciences (PNAS).



"This paper is the culmination of five years of work to build a completely new type of imaging system, which integrates magnetic resonance imaging (MRI) and near-infrared imaging (NIR)," says Brian Pogue, associate professor of engineering and one of the authors of the study.

He explains that because infrared light is sensitive to blood, researchers can locate and quantify regions of oxygenated and deoxygenated hemoglobin by sending infrared light through breast tissue with a fiber optic array. This might help detect early tumor growth and characterize the stage of a tumor by learning about its vascular and cellular makeup.


"The new integrated system allows us to quantify the hemoglobin, water, and scattering values of the tissues with NIR, while using the high resolution of MRI," says Pogue. "For breast imaging, this new system means that we will be able to enhance the information that MRI provides by allowing us to image breast tumors with a completely different mechanism of contrast, namely hemoglobin, oxygen saturation, water, and optical scattering."

Pogue is part of an interdisciplinary team, which includes researchers from Dartmouth’s Thayer School of Engineering and Dartmouth Medical School working with experts at the Norris Cotton Cancer Center and the Department of Radiology at Dartmouth-Hitchcock Medical Center (DHMC). The group is developing and testing imaging techniques to learn about breast tissue structure and behavior.

The study of 11 healthy women offers baseline data of this new technique. The system was developed in lab space at DHMC through shared research with Dartmouth Medical School. According to Pogue, this approach to long-range technology development and collaboration is unique, and Thayer and DMS have a special relationship that allows this to happen easily. There is shared lab space and shared indirect costs that allow close and tight collaborations between engineering researchers and medical doctors.

Sue Knapp | EurekAlert!
Further information:
http://www.Dartmouth.edu

More articles from Health and Medicine:

nachricht How cancer metastasis happens: Researchers reveal a key mechanism
19.01.2018 | Weill Cornell Medicine

nachricht Researchers identify new way to unmask melanoma cells to the immune system
17.01.2018 | Duke University Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>