Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers make vitamin E offshoot a potent cancer killer

22.05.2006


Researchers here have learned how a derivative of vitamin E causes the death of cancer cells. The researchers then used that knowledge to make the agent an even more potent cancer killer.



The compound, called vitamin E succinate, or alpha tocopheryl succinate, is taken by some people as a nutritional supplement, mainly for its antioxidant properties. In addition, it has a weak ability to kill cancer cells, and it has been tested as a cancer chemopreventive agent.

The substance kills cancer cells by causing them to undergo a natural process known as programmed cell death, or apoptosis. Until now, no one knew how the agent caused this to happen.


These findings answer that question and also indicate that the molecule’s antitumor activity is separate from its antioxidant effect.

The study, led by researchers with The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC-James), is published in the April 28 issue of the Journal of Biological Chemistry.

“Our findings could lead to a potent chemopreventive agent that has both strong anticancer and antioxidant properties,” says principal investigator Ching-Shih Chen, professor of pharmacy and of internal medicine and a researcher with the OSUCCC-James.

“Such an agent might help reduce the risk of prostate, colon and other cancers.”

Chen and his collaborators found that vitamin E succinate works by blocking a protein called Bcl-xL. The protein, which is made by healthy cells, is often present at abnormally high levels in cancer cells and protects them from dying when they should.

Using computer modeling, the researchers found that the vitamin E derivative works because it lodges in a groove in the structure of the Bcl-xL protein, disabling it.

However, the vitamin E molecule has a long, coiled, protruding tail that keeps the molecule from fitting tightly, and more effectively, into the groove.

“Once we identified how the agent and the protein interact, we asked how we could improve that interaction,” Chen says.

The scientists found that a relatively simple process of altering the molecule’s structure – basically cutting the tail short – allowed a tighter fit and improved the agent’s ability to kill cancer cells by five- to ten-fold in laboratory tests.

“Overall, out findings are proof of the principle that this drug can kill cancer cells very effectively but does very little damage to healthy cells,” Chen says.

Chen is also the Lucius A. Wing chair of cancer research and therapy at the OSUCCC-James and the Kimberly professor of pharmacy

Funding from the National Cancer Institute supported this research.

Darrell E. Ward | EurekAlert!
Further information:
http://www.osumc.edu

More articles from Health and Medicine:

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

nachricht Stem cell transplants: activating signal paths may protect from graft-versus-host disease
20.04.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>