Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers make vitamin E offshoot a potent cancer killer

22.05.2006


Researchers here have learned how a derivative of vitamin E causes the death of cancer cells. The researchers then used that knowledge to make the agent an even more potent cancer killer.



The compound, called vitamin E succinate, or alpha tocopheryl succinate, is taken by some people as a nutritional supplement, mainly for its antioxidant properties. In addition, it has a weak ability to kill cancer cells, and it has been tested as a cancer chemopreventive agent.

The substance kills cancer cells by causing them to undergo a natural process known as programmed cell death, or apoptosis. Until now, no one knew how the agent caused this to happen.


These findings answer that question and also indicate that the molecule’s antitumor activity is separate from its antioxidant effect.

The study, led by researchers with The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC-James), is published in the April 28 issue of the Journal of Biological Chemistry.

“Our findings could lead to a potent chemopreventive agent that has both strong anticancer and antioxidant properties,” says principal investigator Ching-Shih Chen, professor of pharmacy and of internal medicine and a researcher with the OSUCCC-James.

“Such an agent might help reduce the risk of prostate, colon and other cancers.”

Chen and his collaborators found that vitamin E succinate works by blocking a protein called Bcl-xL. The protein, which is made by healthy cells, is often present at abnormally high levels in cancer cells and protects them from dying when they should.

Using computer modeling, the researchers found that the vitamin E derivative works because it lodges in a groove in the structure of the Bcl-xL protein, disabling it.

However, the vitamin E molecule has a long, coiled, protruding tail that keeps the molecule from fitting tightly, and more effectively, into the groove.

“Once we identified how the agent and the protein interact, we asked how we could improve that interaction,” Chen says.

The scientists found that a relatively simple process of altering the molecule’s structure – basically cutting the tail short – allowed a tighter fit and improved the agent’s ability to kill cancer cells by five- to ten-fold in laboratory tests.

“Overall, out findings are proof of the principle that this drug can kill cancer cells very effectively but does very little damage to healthy cells,” Chen says.

Chen is also the Lucius A. Wing chair of cancer research and therapy at the OSUCCC-James and the Kimberly professor of pharmacy

Funding from the National Cancer Institute supported this research.

Darrell E. Ward | EurekAlert!
Further information:
http://www.osumc.edu

More articles from Health and Medicine:

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

nachricht Disrupted fat breakdown in the brain makes mice dumb
19.05.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>