Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers make vitamin E offshoot a potent cancer killer

22.05.2006


Researchers here have learned how a derivative of vitamin E causes the death of cancer cells. The researchers then used that knowledge to make the agent an even more potent cancer killer.



The compound, called vitamin E succinate, or alpha tocopheryl succinate, is taken by some people as a nutritional supplement, mainly for its antioxidant properties. In addition, it has a weak ability to kill cancer cells, and it has been tested as a cancer chemopreventive agent.

The substance kills cancer cells by causing them to undergo a natural process known as programmed cell death, or apoptosis. Until now, no one knew how the agent caused this to happen.


These findings answer that question and also indicate that the molecule’s antitumor activity is separate from its antioxidant effect.

The study, led by researchers with The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC-James), is published in the April 28 issue of the Journal of Biological Chemistry.

“Our findings could lead to a potent chemopreventive agent that has both strong anticancer and antioxidant properties,” says principal investigator Ching-Shih Chen, professor of pharmacy and of internal medicine and a researcher with the OSUCCC-James.

“Such an agent might help reduce the risk of prostate, colon and other cancers.”

Chen and his collaborators found that vitamin E succinate works by blocking a protein called Bcl-xL. The protein, which is made by healthy cells, is often present at abnormally high levels in cancer cells and protects them from dying when they should.

Using computer modeling, the researchers found that the vitamin E derivative works because it lodges in a groove in the structure of the Bcl-xL protein, disabling it.

However, the vitamin E molecule has a long, coiled, protruding tail that keeps the molecule from fitting tightly, and more effectively, into the groove.

“Once we identified how the agent and the protein interact, we asked how we could improve that interaction,” Chen says.

The scientists found that a relatively simple process of altering the molecule’s structure – basically cutting the tail short – allowed a tighter fit and improved the agent’s ability to kill cancer cells by five- to ten-fold in laboratory tests.

“Overall, out findings are proof of the principle that this drug can kill cancer cells very effectively but does very little damage to healthy cells,” Chen says.

Chen is also the Lucius A. Wing chair of cancer research and therapy at the OSUCCC-James and the Kimberly professor of pharmacy

Funding from the National Cancer Institute supported this research.

Darrell E. Ward | EurekAlert!
Further information:
http://www.osumc.edu

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>