Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research project RISC-RAD’s annual meeting contributes to change the way we see ionizing radiations.

18.05.2006


Throughout our life, we are exposed daily to ionizing radiation (IR) emitted by Earth, during routine medical diagnosis exams, or in the workplace for professionals such as nuclear workers but also cabin crew members of airline companies. How aware is the public of being exposed to low doses of IR? Accounting for about 2,4 mSv/year/person, these unperceived exposures to IR are considered harmless by radiation protection standards based on biological effects the current state of science allows to detect...

But how to be sure that what you can not see does not exist? Part of the answer is expected to come from European research project RISC-RAD (Radiosensitivity of Individuals and Susceptibility to Cancer induced by Ionizing Radiations), which just held its midterm meeting in Leiden, The Netherlands, from 4 to 6 May 2006. This four-year project funded by the European Commission (EC) started on 1st January 2004 and addresses the challenging issue of cancer risk assessment at low doses of IR.

“Under the dose of 100 mSv, epidemiological studies failed to demonstrate long term effects on organisms of exposure to ionizing radiations, because, if they exist, these effects are masked by the high cancer incidence of 25 % in the population”, explains Laure Sabatier, coordinator of RISC-RAD and head of the Radiobiology and Oncology Lab in the French Atomic Energy Commission. “This is why a biological approach is needed, starting with improving our understanding of the mechanisms by which ionizing radiation induce cancer”. Ionizing radiation act as a stress on cells, provoking immediate lesions on DNA double-helix, including strand breaks associated with base modifications. Since Hiroshima and Nagasaki bombings, long term effects of exposure to IR are known to be cancers.



“The mechanisms by which immediate effects of IR lead to long term effects some twenty years later remain unclear” says Dr. Sabatier. Gathering 80 scientists in 29 research institutes from 11 countries, the second RISC-RAD annual meeting in Leiden allowed partners to measure the knowledge gained. In 2005, 72 publications in international scientific journals were achieved through RISC-RAD funding. Some major findings concerned role of Artemis protein in the repair of clustered DNA lesions, consequences of loss to a single telomere in genomic instability, identification of new genes influencing susceptibility to tumorigenesis, and improvement of mathematical models for biological responses to IR. The unique scope of areas covered by these publications was made possible by integrating European research efforts in low dose research into a single project, whose cost is estimated at 30 million euros. RISC-RAD comes under EC 6th Framework Programme for research within EURATOM treaty, which promotes a safe use of nuclear power, including the protection of man and the environment.

The results obtained so far within RISC-RAD show a growing body of evidence that genetic variations could induce differences of response to exposure to IR between individuals. In other words, the same low dose of IR could do no harm at all to some people, and induce a cancer on others, depending on their genetic background. Identification of new genes involved in radiosensitivity is part of RISC-RAD. A critical issue for radiation protection is to be able to assess individual risk taking in account genetic parameters, and not only the average risk as estimated by epidemiological studies.

“The strong point of RISC-RAD is that experimentalists and modelers are working hand in hand to infuse new biological findings into predictive mathematical models” explains Dr. Sabatier. “Thanks to RISC-RAD, the way we see ionizing radiation is changing. Far from being a blessing when it comes to radiotherapy or a plague when it comes to nuclear power, IR are anyway part of our natural environment at low doses. Understanding the mechanisms through which they jeopardize human health will enable to adapt radioprotection standards to individual cases and to promote a safer use of radiations”.

Axel Meunier | alfa
Further information:
http://www.riscrad.org

More articles from Health and Medicine:

nachricht TSRI researchers develop new method to 'fingerprint' HIV
29.03.2017 | Scripps Research Institute

nachricht Periodic ventilation keeps more pollen out than tilted-open windows
29.03.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>