Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Research project RISC-RAD’s annual meeting contributes to change the way we see ionizing radiations.


Throughout our life, we are exposed daily to ionizing radiation (IR) emitted by Earth, during routine medical diagnosis exams, or in the workplace for professionals such as nuclear workers but also cabin crew members of airline companies. How aware is the public of being exposed to low doses of IR? Accounting for about 2,4 mSv/year/person, these unperceived exposures to IR are considered harmless by radiation protection standards based on biological effects the current state of science allows to detect...

But how to be sure that what you can not see does not exist? Part of the answer is expected to come from European research project RISC-RAD (Radiosensitivity of Individuals and Susceptibility to Cancer induced by Ionizing Radiations), which just held its midterm meeting in Leiden, The Netherlands, from 4 to 6 May 2006. This four-year project funded by the European Commission (EC) started on 1st January 2004 and addresses the challenging issue of cancer risk assessment at low doses of IR.

“Under the dose of 100 mSv, epidemiological studies failed to demonstrate long term effects on organisms of exposure to ionizing radiations, because, if they exist, these effects are masked by the high cancer incidence of 25 % in the population”, explains Laure Sabatier, coordinator of RISC-RAD and head of the Radiobiology and Oncology Lab in the French Atomic Energy Commission. “This is why a biological approach is needed, starting with improving our understanding of the mechanisms by which ionizing radiation induce cancer”. Ionizing radiation act as a stress on cells, provoking immediate lesions on DNA double-helix, including strand breaks associated with base modifications. Since Hiroshima and Nagasaki bombings, long term effects of exposure to IR are known to be cancers.

“The mechanisms by which immediate effects of IR lead to long term effects some twenty years later remain unclear” says Dr. Sabatier. Gathering 80 scientists in 29 research institutes from 11 countries, the second RISC-RAD annual meeting in Leiden allowed partners to measure the knowledge gained. In 2005, 72 publications in international scientific journals were achieved through RISC-RAD funding. Some major findings concerned role of Artemis protein in the repair of clustered DNA lesions, consequences of loss to a single telomere in genomic instability, identification of new genes influencing susceptibility to tumorigenesis, and improvement of mathematical models for biological responses to IR. The unique scope of areas covered by these publications was made possible by integrating European research efforts in low dose research into a single project, whose cost is estimated at 30 million euros. RISC-RAD comes under EC 6th Framework Programme for research within EURATOM treaty, which promotes a safe use of nuclear power, including the protection of man and the environment.

The results obtained so far within RISC-RAD show a growing body of evidence that genetic variations could induce differences of response to exposure to IR between individuals. In other words, the same low dose of IR could do no harm at all to some people, and induce a cancer on others, depending on their genetic background. Identification of new genes involved in radiosensitivity is part of RISC-RAD. A critical issue for radiation protection is to be able to assess individual risk taking in account genetic parameters, and not only the average risk as estimated by epidemiological studies.

“The strong point of RISC-RAD is that experimentalists and modelers are working hand in hand to infuse new biological findings into predictive mathematical models” explains Dr. Sabatier. “Thanks to RISC-RAD, the way we see ionizing radiation is changing. Far from being a blessing when it comes to radiotherapy or a plague when it comes to nuclear power, IR are anyway part of our natural environment at low doses. Understanding the mechanisms through which they jeopardize human health will enable to adapt radioprotection standards to individual cases and to promote a safer use of radiations”.

Axel Meunier | alfa
Further information:

More articles from Health and Medicine:

nachricht NIH scientists describe potential antibody treatment for multidrug-resistant K. pneumoniae
14.03.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht Researchers identify key step in viral replication
13.03.2018 | University of Pittsburgh Schools of the Health Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>