Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Joslin-led study reveals new findings on insulin signaling in the liver

15.05.2006


New findings may one day advance treatments to prevent type 2 diabetes and metabolic syndrome



Insulin uses two distinct mechanisms to control glucose and the metabolism of blood fats (lipids) in the liver, a new Joslin Diabetes Center-led study has discovered. Failures in each of these networks can lead to serious health problems: the breakdown of glucose metabolism that can lead to type 2 diabetes, and the malfunction of lipid metabolism contributing to metabolic syndrome, which is a cluster of conditions that puts people at increased risk of heart disease, vascular disease and type 2 diabetes.

The new study, led by C. Ronald Kahn, M.D., and Cullen Taniguchi, M.D., Ph.D., of Joslin Diabetes Center in Boston and their colleagues, is published in the May edition of Cell Metabolism. The findings open the door to the development of new treatments that one day may target directly the conditions that contribute to type 2 diabetes and the metabolic syndrome.


"Patients with the metabolic syndrome have high levels of both glucose and lipids in the blood. We now understand that insulin that controls the pathways that control glucose levels are different from those that regulate lipid levels. By targeting these specific pathways, we might be able to improve problems with glucose metabolism, lipid metabolism or both," says Dr. Kahn, President of Joslin Diabetes Center and Mary K. Iacocca Professor of Medicine at Harvard Medical School.

Diabetes affects an estimated 20.8 million children and adults in the United States -- 7 percent of the population. An estimated 14.6 million Americans have been diagnosed, leaving 6.2 million Americans unaware that they have the disease. In addition, 41 million Americans are thought to have pre-diabetes, or elevated blood glucose levels that put them at risk for developing type 2 diabetes. If untreated or poorly treated, diabetes can lead to blindness, kidney disease, stroke, nerve damage and circulation problems that can result in limb amputations.

Patients generally are diagnosed with metabolic syndrome if they have three or more of the following conditions: abdominal obesity; high cholesterol levels or triglycerides; low levels of good cholesterol; high blood pressure; and high blood glucose. The metabolic syndrome has become increasingly common in the United States, and according to a recent survey, is seen in 24 percent of all adult Americans above age 20 and in about 40 percent of those above age 60.

Exploring the role of the liver The liver is the body’s primary chemical factory, and among its key roles is keeping glucose levels in the blood constant between meals. The liver also produces and packages cholesterol and triglycerides to send throughout the body. Insulin’s activity in the liver controls both of these processes, but, until now, researchers have not understood how insulin does its job.

"In one of its roles, insulin tells the liver that you have just eaten, that it can stop producing glucose since the food you have just eaten will, for a while, supply an adequate amount," says Dr. Taniguchi, a postdoctoral fellow in Joslin’s Section on Cellular and Molecular Physiology and lead author of the paper. "Insulin also is the trigger that tells the liver how to handle lipids. We have been trying for many years to understand how insulin provides these signals, and now we have shown that insulin controls each process differently."

Insulin drives the liver’s metabolic functions by activating a molecule called phosphoinositide 3-kinase (PI3K), which then recruits other enzymes to carry out its orders. While researchers knew that the PI3K pathway was important to insulin’s action, until now they didn’t know how insulin uses PI3K to control either glucose or lipid metabolism.

Using mice bred to lack specific subunits of the PI3K pathway, the researchers discovered that mice that could not activate the protein kinase Akt had increased glucose production in the liver, impaired glucose tolerance, and increased levels of insulin in the blood, all contributors to type 2 diabetes. On the other hand, those mice with defects in the atypical forms of the enzyme protein kinase C (PKC) had decreased lipids in the blood and reduced levels of a protein called SREBP, which is critical for regulating fatty acid and cholesterol in the blood. (This particular form of the PKC enzyme is distinct from the form known as PKC-beta, which is activated by high blood glucose and is linked to many diabetic complications, including those of the eye and the blood vessels.)

"People used to think that Akt controlled both glucose and the lipids in the liver," says Dr. Taniguchi. "Now we know that Akt has nothing to do with the lipids. Akt controls the glucose part and the atypical PKC controls the lipids part." He explains that some patients with fatty liver disease don’t have any glucose problems, while others with type 2 diabetes don’t have problems with their lipids. "Now that we have uncovered the important molecules for each condition," says Dr. Taniguchi, "we can begin to look for ways to specifically target just the lipids or just the glucose."

Marjorie Dwyer | EurekAlert!
Further information:
http://www.joslin.org

More articles from Health and Medicine:

nachricht Cholesterol-lowering drugs may fight infectious disease
22.08.2017 | Duke University

nachricht Once invincible superbug squashed by 'superteam' of antibiotics
22.08.2017 | University at Buffalo

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>