Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gladstone scientists prove neurons produce Alzheimer’s-linked apolipoprotein E

11.05.2006


Unique mouse model helps solve protein mystery



A question long debated among Alzheimer’s disease researchers has been definitively answered by scientists at the Gladstone Institute of Neurological Disease in San Francisco.

Using a unique mouse model, Gladstone Investigator Yadong Huang, MD, PhD, and his team have proven that, under certain conditions, neurons produce Alzheimer’s-linked apolipoprotein E.


Also known as apoE, this cholesterol-carrying protein has three common forms, one of which, apoE4, is the major known genetic risk factor for Alzheimer’s disease, according to studies published around the world in recent years. Until now, most researchers have believed that apoE is synthesized in the brain solely in such cells as astrocytes, microglia, and ependymal layer cells. Controversial for the last decade has been the question of whether or not neurons, which make thought and memory possible by transmitting electrical signals, can produce apoE.

The Gladstone study, published in the May 10 issue of the Journal of Neuroscience and highlighted in its "This Week in the Journal" section, proves that neurons, too, produce apoE, but only in response to injury to the brain.

Key to the finding has been the development of a mouse model that is uniquely capable of alerting researchers whenever and wherever the apoE gene is expressed. Huang and his team have succeeded in making one of the two alleles of the apoE gene produce a green fluorescent protein that represents apoE, while the remaining allele functions normally. Thus, under a microscope, the bright green fluorescence, dubbed EGFPapoE, shows researchers wherever the apoE gene is expressed.

"This study lays to rest a long-standing controversy concerning the neuronal expression of apoE," says senior author Huang, an assistant professor of pathology and neurology at UCSF. "Our study proves clearly that neurons produce apoE in response to injury. They support the notion that an understanding of how apoE expression is regulated in neurons is important for unraveling the mechanisms underlying apoE4-related neurodegenerative disorders."

"ApoE expression can be detected with unprecedented sensitivity and resolution in these mice," explains Qin Xu, PhD, a Gladstone postdoctoral scholar and first author of the paper. "This mouse model, known as the ’EGFP knock-in,’ is a new and extremely promising approach to monitor gene expression in vivo." "Our EGFPapoE reporter mice can be used to track apoE expression in any tissue at any stage of development," adds Huang. "They will be a valuable tool for investigating the normal functions of apoE and the regulatory mechanisms that govern its expression."

Still to be determined is the exact mechanism by which apoE4 wreaks havoc on the brain, playing roles not only in Alzheimer’s disease but also in a number of other neurological diseases. Studies in Huang’s lab have revealed a possible scenario. It appears that apoE in neurons is subject to processing by an enzyme that clips off a portion of the protein, resulting in toxic fragments that escape the secretory pathway and enter the cytosol (the fluid portion of a cell’s cytoplasm). Studies now underway at Gladstone and elsewhere indicate that those fragments may interfere with glucose metabolism in the mitochondria (small intracellular organelles responsible for energy production, among other functions), leading to mitochondrial dysfunction and neuronal cell death.

The paper, "Profile and Regulation of Apolipoprotein (Apo) E Expression in Central Nervous System in Mice with Targeting of Green Fluorescent Protein Gene to the apoE Locus," was authored by Aubrey Bernardo, David Walker, and Tiffany Kanegawa of the Gladstone Institute of Neurological Disease, Gladstone Institutes President Robert W. Mahley, and Xu and Huang. This work was supported in part by grants from the National Institutes of Heath and a postdoctoral fellowship from the John Douglas French Alzheimer’s Foundation.

John Watson | EurekAlert!
Further information:
http://www.gladstone.ucsf.edu
http://www.ucsf.edu

More articles from Health and Medicine:

nachricht Speed data for the brain’s navigation system
06.12.2016 | Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE)

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Predicting unpredictability: Information theory offers new way to read ice cores

07.12.2016 | Earth Sciences

Sea ice hit record lows in November

07.12.2016 | Earth Sciences

New material could lead to erasable and rewriteable optical chips

07.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>