Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gladstone scientists prove neurons produce Alzheimer’s-linked apolipoprotein E

11.05.2006


Unique mouse model helps solve protein mystery



A question long debated among Alzheimer’s disease researchers has been definitively answered by scientists at the Gladstone Institute of Neurological Disease in San Francisco.

Using a unique mouse model, Gladstone Investigator Yadong Huang, MD, PhD, and his team have proven that, under certain conditions, neurons produce Alzheimer’s-linked apolipoprotein E.


Also known as apoE, this cholesterol-carrying protein has three common forms, one of which, apoE4, is the major known genetic risk factor for Alzheimer’s disease, according to studies published around the world in recent years. Until now, most researchers have believed that apoE is synthesized in the brain solely in such cells as astrocytes, microglia, and ependymal layer cells. Controversial for the last decade has been the question of whether or not neurons, which make thought and memory possible by transmitting electrical signals, can produce apoE.

The Gladstone study, published in the May 10 issue of the Journal of Neuroscience and highlighted in its "This Week in the Journal" section, proves that neurons, too, produce apoE, but only in response to injury to the brain.

Key to the finding has been the development of a mouse model that is uniquely capable of alerting researchers whenever and wherever the apoE gene is expressed. Huang and his team have succeeded in making one of the two alleles of the apoE gene produce a green fluorescent protein that represents apoE, while the remaining allele functions normally. Thus, under a microscope, the bright green fluorescence, dubbed EGFPapoE, shows researchers wherever the apoE gene is expressed.

"This study lays to rest a long-standing controversy concerning the neuronal expression of apoE," says senior author Huang, an assistant professor of pathology and neurology at UCSF. "Our study proves clearly that neurons produce apoE in response to injury. They support the notion that an understanding of how apoE expression is regulated in neurons is important for unraveling the mechanisms underlying apoE4-related neurodegenerative disorders."

"ApoE expression can be detected with unprecedented sensitivity and resolution in these mice," explains Qin Xu, PhD, a Gladstone postdoctoral scholar and first author of the paper. "This mouse model, known as the ’EGFP knock-in,’ is a new and extremely promising approach to monitor gene expression in vivo." "Our EGFPapoE reporter mice can be used to track apoE expression in any tissue at any stage of development," adds Huang. "They will be a valuable tool for investigating the normal functions of apoE and the regulatory mechanisms that govern its expression."

Still to be determined is the exact mechanism by which apoE4 wreaks havoc on the brain, playing roles not only in Alzheimer’s disease but also in a number of other neurological diseases. Studies in Huang’s lab have revealed a possible scenario. It appears that apoE in neurons is subject to processing by an enzyme that clips off a portion of the protein, resulting in toxic fragments that escape the secretory pathway and enter the cytosol (the fluid portion of a cell’s cytoplasm). Studies now underway at Gladstone and elsewhere indicate that those fragments may interfere with glucose metabolism in the mitochondria (small intracellular organelles responsible for energy production, among other functions), leading to mitochondrial dysfunction and neuronal cell death.

The paper, "Profile and Regulation of Apolipoprotein (Apo) E Expression in Central Nervous System in Mice with Targeting of Green Fluorescent Protein Gene to the apoE Locus," was authored by Aubrey Bernardo, David Walker, and Tiffany Kanegawa of the Gladstone Institute of Neurological Disease, Gladstone Institutes President Robert W. Mahley, and Xu and Huang. This work was supported in part by grants from the National Institutes of Heath and a postdoctoral fellowship from the John Douglas French Alzheimer’s Foundation.

John Watson | EurekAlert!
Further information:
http://www.gladstone.ucsf.edu
http://www.ucsf.edu

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>