Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Gladstone scientists prove neurons produce Alzheimer’s-linked apolipoprotein E


Unique mouse model helps solve protein mystery

A question long debated among Alzheimer’s disease researchers has been definitively answered by scientists at the Gladstone Institute of Neurological Disease in San Francisco.

Using a unique mouse model, Gladstone Investigator Yadong Huang, MD, PhD, and his team have proven that, under certain conditions, neurons produce Alzheimer’s-linked apolipoprotein E.

Also known as apoE, this cholesterol-carrying protein has three common forms, one of which, apoE4, is the major known genetic risk factor for Alzheimer’s disease, according to studies published around the world in recent years. Until now, most researchers have believed that apoE is synthesized in the brain solely in such cells as astrocytes, microglia, and ependymal layer cells. Controversial for the last decade has been the question of whether or not neurons, which make thought and memory possible by transmitting electrical signals, can produce apoE.

The Gladstone study, published in the May 10 issue of the Journal of Neuroscience and highlighted in its "This Week in the Journal" section, proves that neurons, too, produce apoE, but only in response to injury to the brain.

Key to the finding has been the development of a mouse model that is uniquely capable of alerting researchers whenever and wherever the apoE gene is expressed. Huang and his team have succeeded in making one of the two alleles of the apoE gene produce a green fluorescent protein that represents apoE, while the remaining allele functions normally. Thus, under a microscope, the bright green fluorescence, dubbed EGFPapoE, shows researchers wherever the apoE gene is expressed.

"This study lays to rest a long-standing controversy concerning the neuronal expression of apoE," says senior author Huang, an assistant professor of pathology and neurology at UCSF. "Our study proves clearly that neurons produce apoE in response to injury. They support the notion that an understanding of how apoE expression is regulated in neurons is important for unraveling the mechanisms underlying apoE4-related neurodegenerative disorders."

"ApoE expression can be detected with unprecedented sensitivity and resolution in these mice," explains Qin Xu, PhD, a Gladstone postdoctoral scholar and first author of the paper. "This mouse model, known as the ’EGFP knock-in,’ is a new and extremely promising approach to monitor gene expression in vivo." "Our EGFPapoE reporter mice can be used to track apoE expression in any tissue at any stage of development," adds Huang. "They will be a valuable tool for investigating the normal functions of apoE and the regulatory mechanisms that govern its expression."

Still to be determined is the exact mechanism by which apoE4 wreaks havoc on the brain, playing roles not only in Alzheimer’s disease but also in a number of other neurological diseases. Studies in Huang’s lab have revealed a possible scenario. It appears that apoE in neurons is subject to processing by an enzyme that clips off a portion of the protein, resulting in toxic fragments that escape the secretory pathway and enter the cytosol (the fluid portion of a cell’s cytoplasm). Studies now underway at Gladstone and elsewhere indicate that those fragments may interfere with glucose metabolism in the mitochondria (small intracellular organelles responsible for energy production, among other functions), leading to mitochondrial dysfunction and neuronal cell death.

The paper, "Profile and Regulation of Apolipoprotein (Apo) E Expression in Central Nervous System in Mice with Targeting of Green Fluorescent Protein Gene to the apoE Locus," was authored by Aubrey Bernardo, David Walker, and Tiffany Kanegawa of the Gladstone Institute of Neurological Disease, Gladstone Institutes President Robert W. Mahley, and Xu and Huang. This work was supported in part by grants from the National Institutes of Heath and a postdoctoral fellowship from the John Douglas French Alzheimer’s Foundation.

John Watson | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

nachricht Breakthrough in Mapping Nicotine Addiction Could Help Researchers Improve Treatment
04.10.2016 | UT Southwestern Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>