Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanotechnology shows early promise to treat cardiovascular disease

11.05.2006


Therapeutic design acts locally, could reduce recurrence of blocked blood vessels

A new tactic in the battle against cardiovascular disease – employing nanoengineered molecules called "nanolipoblockers" as frontline infantry against harmful cholesterol – is showing promise in early laboratory studies at Rutgers, The State University of New Jersey.

In a paper scheduled for publication June 12 in the American Chemical Society’s journal Biomacromolecules and now appearing on that journal’s Web site, Rutgers researchers propose a way to combat clogged arteries by attacking how bad cholesterol triggers inflammation and causes plaque buildup at specific blood vessel sites. Their approach contrasts with today’s statin drug therapy, which aims to reduce the amount of low density lipids, or LDLs ("bad" cholesterol), throughout the body.



In an ironic twist, the Rutgers approach aims to thwart a biological process that is typically beneficial and necessary. Prabhas Mogue, the principal investigator and associate professor of biomedical engineering and chemical and biochemical engineering at Rutgers, said that vascular plaque and inflammation develop when certain forms of LDL are attacked by white blood cells that scavenge cellular debris and disease agents. "While these scavengers, called macrophages, perform an essential role in keeping organisms healthy, their interaction with highly oxidized LDL molecules has quite the opposite effect," he said.

Mogue explains that macrophages accumulate large amounts of oxidized LDL and secrete chemicals that can damage the neighboring tissues and, ultimately, become fatty foam cells. The researchers’ approach, therefore, is to create clusters of nanoengineered molecules that target specific receptor molecules on cell membranes and block these oxidized LDLs from attaching to macrophages.

Mogue is working with Kathryn Uhrich, Rutgers professor of chemistry and chemical biology, who is an expert at synthesizing biologically useful molecules at the nanoscale – anywhere from 10 to 100 nanometers long. The research team, which also includes graduate student Evangelia Chnari and synthetic chemists Lu Tian and Jinzhong Wang, has designed a family of nanolipoblockers, or NLBs, which compete with oxidized LDL for a macrophage’s attention. The NLBs bind to receptor sites on macrophages, cutting the accumulation of oxidized LDL by as much as 75 percent.

The NLB particles are made of several engineered organic strands or chains whose ends cluster around a central point, creating a structure known as a micelle. Uhrich synthesized molecule chains with several different characteristics, such as attracting or repelling water or having a positive or negative charge. When the chains assembled into micelles, Mogue tested them for how well they blocked LDL uptake.

"We’re employing the tools of nanotechnology – specifically tailoring the structure of the molecule, changing groups on the ends of the chains and closely analyzing which forms of the particles bind to the different macrophage receptors," Uhrich said. "The significant finding of our study is that the nanoscale organization matters tremendously for blockage of oxidized LDL, which opens new avenues for more specific targeting of receptors."

Mogue said that if this method proves feasible in living organisms, it could convey treatment to the site of the problem, rather than a systemic approach. "While statins are a great stride in preventing cardiovascular disease, they are not suitable for everyone," Mogue said. "Our approach also has potential to topically address the recurrence of inflammation and blockage at stent surgery sites, something that systemically active drugs have not been shown to consistently do."

Research to test the performance of NLBs in living organisms is now under way.

Carl Blesch | EurekAlert!
Further information:
http://www.rutgers.edu

More articles from Health and Medicine:

nachricht Minimising risks of transplants
22.02.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht FAU researchers demonstrate that an oxygen sensor in the body reduces inflammation
22.02.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Stiffness matters

22.02.2018 | Life Sciences

Magnetic field traces gas and dust swirling around supermassive black hole

22.02.2018 | Physics and Astronomy

First evidence of surprising ocean warming around Galápagos corals

22.02.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>