Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanotechnology shows early promise to treat cardiovascular disease

11.05.2006


Therapeutic design acts locally, could reduce recurrence of blocked blood vessels

A new tactic in the battle against cardiovascular disease – employing nanoengineered molecules called "nanolipoblockers" as frontline infantry against harmful cholesterol – is showing promise in early laboratory studies at Rutgers, The State University of New Jersey.

In a paper scheduled for publication June 12 in the American Chemical Society’s journal Biomacromolecules and now appearing on that journal’s Web site, Rutgers researchers propose a way to combat clogged arteries by attacking how bad cholesterol triggers inflammation and causes plaque buildup at specific blood vessel sites. Their approach contrasts with today’s statin drug therapy, which aims to reduce the amount of low density lipids, or LDLs ("bad" cholesterol), throughout the body.



In an ironic twist, the Rutgers approach aims to thwart a biological process that is typically beneficial and necessary. Prabhas Mogue, the principal investigator and associate professor of biomedical engineering and chemical and biochemical engineering at Rutgers, said that vascular plaque and inflammation develop when certain forms of LDL are attacked by white blood cells that scavenge cellular debris and disease agents. "While these scavengers, called macrophages, perform an essential role in keeping organisms healthy, their interaction with highly oxidized LDL molecules has quite the opposite effect," he said.

Mogue explains that macrophages accumulate large amounts of oxidized LDL and secrete chemicals that can damage the neighboring tissues and, ultimately, become fatty foam cells. The researchers’ approach, therefore, is to create clusters of nanoengineered molecules that target specific receptor molecules on cell membranes and block these oxidized LDLs from attaching to macrophages.

Mogue is working with Kathryn Uhrich, Rutgers professor of chemistry and chemical biology, who is an expert at synthesizing biologically useful molecules at the nanoscale – anywhere from 10 to 100 nanometers long. The research team, which also includes graduate student Evangelia Chnari and synthetic chemists Lu Tian and Jinzhong Wang, has designed a family of nanolipoblockers, or NLBs, which compete with oxidized LDL for a macrophage’s attention. The NLBs bind to receptor sites on macrophages, cutting the accumulation of oxidized LDL by as much as 75 percent.

The NLB particles are made of several engineered organic strands or chains whose ends cluster around a central point, creating a structure known as a micelle. Uhrich synthesized molecule chains with several different characteristics, such as attracting or repelling water or having a positive or negative charge. When the chains assembled into micelles, Mogue tested them for how well they blocked LDL uptake.

"We’re employing the tools of nanotechnology – specifically tailoring the structure of the molecule, changing groups on the ends of the chains and closely analyzing which forms of the particles bind to the different macrophage receptors," Uhrich said. "The significant finding of our study is that the nanoscale organization matters tremendously for blockage of oxidized LDL, which opens new avenues for more specific targeting of receptors."

Mogue said that if this method proves feasible in living organisms, it could convey treatment to the site of the problem, rather than a systemic approach. "While statins are a great stride in preventing cardiovascular disease, they are not suitable for everyone," Mogue said. "Our approach also has potential to topically address the recurrence of inflammation and blockage at stent surgery sites, something that systemically active drugs have not been shown to consistently do."

Research to test the performance of NLBs in living organisms is now under way.

Carl Blesch | EurekAlert!
Further information:
http://www.rutgers.edu

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>