Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanotechnology shows early promise to treat cardiovascular disease

11.05.2006


Therapeutic design acts locally, could reduce recurrence of blocked blood vessels

A new tactic in the battle against cardiovascular disease – employing nanoengineered molecules called "nanolipoblockers" as frontline infantry against harmful cholesterol – is showing promise in early laboratory studies at Rutgers, The State University of New Jersey.

In a paper scheduled for publication June 12 in the American Chemical Society’s journal Biomacromolecules and now appearing on that journal’s Web site, Rutgers researchers propose a way to combat clogged arteries by attacking how bad cholesterol triggers inflammation and causes plaque buildup at specific blood vessel sites. Their approach contrasts with today’s statin drug therapy, which aims to reduce the amount of low density lipids, or LDLs ("bad" cholesterol), throughout the body.



In an ironic twist, the Rutgers approach aims to thwart a biological process that is typically beneficial and necessary. Prabhas Mogue, the principal investigator and associate professor of biomedical engineering and chemical and biochemical engineering at Rutgers, said that vascular plaque and inflammation develop when certain forms of LDL are attacked by white blood cells that scavenge cellular debris and disease agents. "While these scavengers, called macrophages, perform an essential role in keeping organisms healthy, their interaction with highly oxidized LDL molecules has quite the opposite effect," he said.

Mogue explains that macrophages accumulate large amounts of oxidized LDL and secrete chemicals that can damage the neighboring tissues and, ultimately, become fatty foam cells. The researchers’ approach, therefore, is to create clusters of nanoengineered molecules that target specific receptor molecules on cell membranes and block these oxidized LDLs from attaching to macrophages.

Mogue is working with Kathryn Uhrich, Rutgers professor of chemistry and chemical biology, who is an expert at synthesizing biologically useful molecules at the nanoscale – anywhere from 10 to 100 nanometers long. The research team, which also includes graduate student Evangelia Chnari and synthetic chemists Lu Tian and Jinzhong Wang, has designed a family of nanolipoblockers, or NLBs, which compete with oxidized LDL for a macrophage’s attention. The NLBs bind to receptor sites on macrophages, cutting the accumulation of oxidized LDL by as much as 75 percent.

The NLB particles are made of several engineered organic strands or chains whose ends cluster around a central point, creating a structure known as a micelle. Uhrich synthesized molecule chains with several different characteristics, such as attracting or repelling water or having a positive or negative charge. When the chains assembled into micelles, Mogue tested them for how well they blocked LDL uptake.

"We’re employing the tools of nanotechnology – specifically tailoring the structure of the molecule, changing groups on the ends of the chains and closely analyzing which forms of the particles bind to the different macrophage receptors," Uhrich said. "The significant finding of our study is that the nanoscale organization matters tremendously for blockage of oxidized LDL, which opens new avenues for more specific targeting of receptors."

Mogue said that if this method proves feasible in living organisms, it could convey treatment to the site of the problem, rather than a systemic approach. "While statins are a great stride in preventing cardiovascular disease, they are not suitable for everyone," Mogue said. "Our approach also has potential to topically address the recurrence of inflammation and blockage at stent surgery sites, something that systemically active drugs have not been shown to consistently do."

Research to test the performance of NLBs in living organisms is now under way.

Carl Blesch | EurekAlert!
Further information:
http://www.rutgers.edu

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>