Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanotubes used for first time to send signals to nerve cells

10.05.2006


Texas scientists have added one more trick to the amazing repertoire of carbon nanotubes -- the ability to carry electrical signals to nerve cells.



Nanotubes, tiny hollow carbon filaments about one ten-thousandth the diameter of a human hair, are already famed as one of the most versatile materials ever discovered. A hundred times as strong as steel and one-sixth as dense, able to conduct electricity better than copper or to substitute for silicon in semiconductor chips, carbon nanotubes have been proposed as the basis for everything from elevator cables that could lift payloads into Earth orbit to computers smaller than human cells.

Thin films of carbon nanotubes deposited on transparent plastic can also serve as a surface on which cells can grow. And as researchers at the University of Texas Medical Branch at Galveston (UTMB) and Rice University suggest in a paper published in the May issue of the Journal of Nanoscience and Nanotechnology, these nanotube films could potentially serve as an electrical interface between living tissue and prosthetic devices or biomedical instruments.


"As far as I know, we’re the first group to show that you can have some kind of electrical communication between these two things, by stimulating cells through our transparent conductive layer," said Todd Pappas, director of sensory and molecular neuroengineering at UTMB’s Center for Biomedical Engineering and one of the study’s senior authors. Pappas and UTMB research associate Anton Liopo collaborated on the work with James Tour, director of the Carbon Nanotechnology Laboratory at Rice’s Richard E. Smalley Institute for Nanoscale Science and Technology, Rice postdoctoral fellow Michael Stewart and Rice graduate student Jared Hudson.

The group employed two different types of cells in their experiments, neuroblastoma cells commonly used in test-tube experiments and neurons cultured from experimental rats. Both cell types were placed on ten-layer-thick "mats" of single-walled carbon nanotubes (SWNTs) deposited on transparent plastic. This enabled the researchers to use a microscope to position a tiny electrode next to individual cells and record their responses to electrical pulses transmitted through the SWNTs.

In addition to their electrical stimulation experiments, the scientists also studied how different kinds of SWNTs affected the growth and development of neuroblastoma cells. They compared cells placed on mats made of "functionalized" SWNTs, carbon nanotubes with additional molecules attached to their surfaces that may be used to guide cell growth or customize nanotube electrical properties, to cells cultured on unmodified "native" carbon nanotubes and conventional tissue culture plastic.

"Native carbon nanotubes support neuron attachment and growth well -- as we expected, better than the two types of functionalized nanotubes we tested," Pappas said. "Next we want to find a way to functionalize the nanotubes to make neuron attachment and communication better and make these surfaces more biocompatible."

Another avenue Pappas wants to explore is finding out whether nanotubes are sensitive enough to record ongoing electrical activity in cells. "Where we want to get to is a device that can both sense and deliver stimuli to cells for things like prosthetic control," Pappas said. "I think it’s definitely doable, and we’re pursuing that with Jim Tour and his group. It’s great to be able to work with a guy who’s on the cutting edge of nanoelectronics technology -- he seems to develop something new every week, and it’s really become a great interaction."

Jim Kelly | EurekAlert!
Further information:
http://www.utmb.edu

More articles from Health and Medicine:

nachricht Finnish research group discovers a new immune system regulator
23.02.2018 | University of Turku

nachricht Minimising risks of transplants
22.02.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>