Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technique offers relief for patients with spinal tumors

09.05.2006


A radiologist at the University of California, San Diego (UCSD) School of Medicine has developed a new procedure to treat fractured vertebrae caused by spinal tumors, a procedure that may decrease the risk of complications, which are experienced by 5 to 10% of patients with malignant tumors of the spine.



Wade Wong, D.O.F.A.C.R, UCSD professor of radiology, and San Diego clinician Bassem Georgy, M.D., partially removed spinal tumors from 28 patients before repairing the spine with vertebroplasty – a procedure to cement and stabilize damaged vertebrae. He used a technology that utilizes plasma-mediated radiofrequency energy combined with saline solution to gently and precisely remove soft tissue at low temperature – minimizing damage to healthy tissue.

"This image-guided procedure guarantees ultimate accuracy," said Wong. It enables us to provide pain relief and improved mobility to patients while minimizing risks that have traditionally limited treatment options for cancer patients."


Wong will present his study on May 6 at the American Society of Interventional and Therapeutic Neuroradiology (ASITN.) He added that some patients in the study who were previously bedridden became much more active after their fractures were repaired using this method, increasing their overall quality of life.

Vertebral compression fractures (VCFs) are common complications of spinal tumors. Approximately 10 percent of the estimated one million VCFs that occur each year in the United States are caused by spinal metastases. Unfortunately, spinal tumors present challenges that traditionally have left many cancer patients with very few treatment options. Open surgery is invasive and involves a long recovery. Traditional vertebroplasty and kyphoplasty – two procedures that utilize bone cement to stabilize the fractured vertebrae – are also risky when a tumor is present, because the procedures can cause cancerous cells to spread into the blood stream. They also carry a higher risk of bone cement leaking out of the vertebral body into the spinal canal, potentially leading to paralysis.

Wong removed the tumor prior to vertebroplasty on 28 patients using the plasma-mediated procedure commonly known as the "Coblation SpineWand." Following the partial removal of the tumor, bone cement was injected into the cavity created by the process in order to stabilize the fractured bone fragments. The researchers report that all 28 patients treated in the study experienced decreased pain and improved function.

"I never dreamed it would be this successful," said Wong, adding that when first approached the ArthroCare Corporation, manufacturers of the Coblation process, they were skeptical. The device was already in use for other medical applications, such as ear, nose and throat surgery, and arthroscopic applications. "Generally, a cancerous lesion of the spine can eat away at the bone, which can cause a mass in the spinal canal resulting in paralysis or great pain," Wong said.

The process first removes tumor bulk, then delivers cement to strength the vertebrae, which reduces pain.

"It’s like creating a cast to a fracture," said Wong, "but in the inside of the body instead of on the outside."

Using the process doesn’t preclude other treatments, such as chemo or radiation therapy. Though the process doesn’t cure the cancer, it can add to the quality of life for the patient.

"Even in patients with a malignancy, it doesn’t mean it’s the end of their life. This procedure allows them to resume activities, like walking or even rollerblading, that they enjoyed before," said Wong, adding, "Quality of life is what’s key."

Debra Kain | EurekAlert!
Further information:
http://www.ucsd.edu
http://www.arthrocare.com/

More articles from Health and Medicine:

nachricht Serious children’s infections also spreading in Switzerland
26.07.2017 | Universitätsspital Bern

nachricht New vaccine production could improve flu shot accuracy
25.07.2017 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>