Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


How should countries best respond to a flu pandemic?


Researchers have predicted how effective public health and medical interventions will prove in the event of an influenza pandemic.

The letter published today in Nature shows how the team from Imperial College London, John Hopkins Bloomberg School of Public Health, and RTI International used computer modelling to predict how a variety of interventions, including travel restrictions, school closures and antiviral treatment, would affect the spread of flu.

Professor Neil Ferguson from Imperial College London, who led the research, said: “The modelling shows there is no single magic bullet which can control a flu pandemic, but that a combination of interventions could be highly effective at reducing transmission, potentially saving many lives.”

The research shows that border restrictions are unlikely to delay the spread of influenza by more than a few weeks unless they are more than 99 percent effective. Restricting travel within a country is predicted to have an even more limited impact on slowing spread of a pandemic within that country.

The modelling predicts that a pandemic in the UK will peak within two to three months of the first case, and be over within four months. “Speed of response is therefore essential”, says Professor Ferguson.

The modelling shows the number of people getting ill in a pandemic could be halved if school closure was combined with using antiviral drugs not just for treating cases (as is currently planned), but also to treat people in the same household as cases. The impact would be even greater if people in the same households as cases also voluntarily stayed at home. School closures on their own are predicted to have a minor impact on overall case numbers, but might slow the epidemic enough to reduce peak demand on health care resources by as much as 40 percent.

It also shows that vaccines need to be available within two months of the start of a pandemic to have a big effect in reducing infection rates. With current manufacturing methods, this means vaccines would need to be stockpiled in advance. This could significantly reduce the numbers infected even if the vaccine wasn’t perfectly matched to the virus which emerges. A vaccine stockpile sufficient to vaccinate 20 percent of the population could reduce case numbers by a third if children were vaccinated within a few weeks of the start of a pandemic. Combining pre-vaccination with household prophylaxis could reduce case numbers by two thirds.

The supercomputer model simulated pandemic spread in Great Britain and the United States, using detailed data on population density and demographics, together with data on human travel patterns.

Tony Stephenson | alfa
Further information:

More articles from Health and Medicine:

nachricht Inflammation Triggers Unsustainable Immune Response to Chronic Viral Infection
24.10.2016 | Universität Basel

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>