Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemotherapy gel may fight breast cancer and reduce breast deformity

26.04.2006


Women who undergo surgery for breast cancer followed by radiation therapy often experience breast deformities that can only be corrected through reconstructive surgery. Researchers at the McGowan Institute for Regenerative Medicine, in collaboration with bioengineers at Carnegie Mellon University, have developed a polymer-based therapy for breast cancer that could serve as an artificial tissue filler after surgery and a clinically effective therapy. Their findings, based on studies with mice, will be presented at 10:15 a.m., Tuesday, April 25 at the World Congress on Tissue Engineering and Regenerative Medicine, April 24 to 27, at the Westin Convention Center in Pittsburgh.



"Although radiation therapy is the standard treatment for breast cancer following surgery, it is expensive, time consuming and increases the cosmetic deformity caused by surgery," said Howard D. Edington, M.D., associate professor of surgery and surgical oncology at the University of Pittsburgh and faculty member at McGowan. "We sought to develop a possible alternative to radiation therapy that would not only release chemotherapy slowly to kill the cancerous cells left behind after surgery but that also would fill in the dimples and sometimes quite significant indentations that are common after breast surgery and radiation."

To test their idea, the researchers encapsulated a common breast cancer chemotherapy drug, doxorubicin, in microspheres, or beads, and then mixed them with a gelatin made of a polymer substance. Mice with breast cancer tumors were treated by inserting the gel under the skin next to the mammary gland. The researchers found that they could successfully control the delivery of chemotherapy over a period of 30 days and that the tumors were completely eradicated compared to a control group of mice that were implanted with the gel insert without chemotherapy.


"Through further research and testing, our goal is to develop this into a clinical treatment for women undergoing breast cancer surgery," said Dr. Edington who also is chief of surgery at Magee-Womens Hospital. "This treatment may help decrease the occurrences of breast deformity. With more studies under our belt, we believe this approach could eventually represent an alternative to breast radiation after surgery."

According to Dr. Edington, clinical trials on women with breast cancer will follow additional laboratory studies. A paper detailing these results will be published in the Journal of Biomedical Materials Research.

Clare Collins | EurekAlert!
Further information:
http://www.upmc.edu

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>