Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NYU, Austrian researchers create non-invasive imaging method with advantages over conventional MRI

25.04.2006


New York University’s Alexej Jerschow, an assistant professor of chemistry, and Norbert Müller, a professor of chemistry at the University of Linz in Austria, have developed a completely non-invasive imaging method. Their work offers the benefits of magnetic resonance imaging (MRI) while eliminating patients’ exposure to irradiation and setting the stage for the creation of light, mobile MRI technology. The research, which appears in the latest issue of the Proceedings of the National Academy of Sciences (PNAS), was supported by the National Science Foundation.

MRI allows clinicians to non-invasively visualize soft tissue in the interior of the human body through the application of radiofrequency (rf) irradiation. However, the rf pulses of MRI machines deposit heat in patients and medical staff, though safety regulations that limit energy deposition have long been established. Jerschow and Müller have devised a low-energy, nuclear magnetic resonance (NMR) technique that does not require external rf-irradiation. Their technique, instead, relies on the detection of spontaneous, proton spin-noise in a tightly coupled rf-cavity.

In order to reconstruct spin-noise images that characterize MRI, the researchers used a commercial, liquid-state NMR spectrometer equipped with a cryogenically cooled probe. The sample, a phantom of four glass capillaries filled with mixtures of water and heavy water, remained at room temperature. The authors inserted the sample into a standard NMR tube and applied a magnetic field gradient to acquire spatial encoding information. They collected 30, one-dimensional images, and after applying a projection reconstruction algorithm, obtained the phantom’s two-dimensional image. Because of its low-energy deposition, Müller and Jerschow’s imaging technique may enable new application areas for magnetic resonance microscopy. Using already-developed methods, the researchers expect expansion to three-dimensional imaging to be straightforward.



The same detection scheme is applicable to NMR spectroscopy. Very delicate samples, such as explosives could be investigated with this method. Preliminary investigations also predict a sensitivity advantage over conventional experiments at length scales of millimeters to micrometers, which may be important in the measurement of NMR spectra within microfluidic devices.

Very strong magnetic fields, as generally required for MRI and NMR, can be avoided with the spin-noise detection scheme, making possible the development of extremely portable and minimally invasive MRI and NMR instruments.

James Devitt | EurekAlert!
Further information:
http://www.nyu.edu

More articles from Health and Medicine:

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

nachricht New type of blood cells work as indicators of autoimmunity
14.08.2017 | Instituto de Medicina Molecular

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>