Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NYU, Austrian researchers create non-invasive imaging method with advantages over conventional MRI

25.04.2006


New York University’s Alexej Jerschow, an assistant professor of chemistry, and Norbert Müller, a professor of chemistry at the University of Linz in Austria, have developed a completely non-invasive imaging method. Their work offers the benefits of magnetic resonance imaging (MRI) while eliminating patients’ exposure to irradiation and setting the stage for the creation of light, mobile MRI technology. The research, which appears in the latest issue of the Proceedings of the National Academy of Sciences (PNAS), was supported by the National Science Foundation.

MRI allows clinicians to non-invasively visualize soft tissue in the interior of the human body through the application of radiofrequency (rf) irradiation. However, the rf pulses of MRI machines deposit heat in patients and medical staff, though safety regulations that limit energy deposition have long been established. Jerschow and Müller have devised a low-energy, nuclear magnetic resonance (NMR) technique that does not require external rf-irradiation. Their technique, instead, relies on the detection of spontaneous, proton spin-noise in a tightly coupled rf-cavity.

In order to reconstruct spin-noise images that characterize MRI, the researchers used a commercial, liquid-state NMR spectrometer equipped with a cryogenically cooled probe. The sample, a phantom of four glass capillaries filled with mixtures of water and heavy water, remained at room temperature. The authors inserted the sample into a standard NMR tube and applied a magnetic field gradient to acquire spatial encoding information. They collected 30, one-dimensional images, and after applying a projection reconstruction algorithm, obtained the phantom’s two-dimensional image. Because of its low-energy deposition, Müller and Jerschow’s imaging technique may enable new application areas for magnetic resonance microscopy. Using already-developed methods, the researchers expect expansion to three-dimensional imaging to be straightforward.



The same detection scheme is applicable to NMR spectroscopy. Very delicate samples, such as explosives could be investigated with this method. Preliminary investigations also predict a sensitivity advantage over conventional experiments at length scales of millimeters to micrometers, which may be important in the measurement of NMR spectra within microfluidic devices.

Very strong magnetic fields, as generally required for MRI and NMR, can be avoided with the spin-noise detection scheme, making possible the development of extremely portable and minimally invasive MRI and NMR instruments.

James Devitt | EurekAlert!
Further information:
http://www.nyu.edu

More articles from Health and Medicine:

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>