Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New target-seeking molecule offers hope of better cancer treatment

21.04.2006


A new target-seeking affibody molecule can be used to visualize cancer tumors and to treat them. This has been shown in a dissertation by Ann-Charlott Steffen to be publicly defended at Uppsala University on April 22.


The gamma camera image shows the distribution of radioactivity in a mouse given target-seeking affibody molecules marked with radioactivity. The uptake can be seen in the thyroid gland, the kidneys, and the tumor.



Every third Swede is estimated to receive a cancer diagnosis sometime in their lives, and nearly one Swede in four dies as a result of the disease. The need for improved detection and treatment of the disease is great.

Existing treatments include surgery, chemotherapy, and radiation. Surgery is most effective for large, well-defined tumors, but if the disease has spread, chemotherapy and/or radiation are needed. These forms of treatment affect all dividing cells, leading to toxic effects on healthy tissue. This toxicity limits the size of the dose that can be given, thereby also limiting the probability that the disease will be cured. By seeking out tumor cells and selectively delivering cytostatics or radiation to the cancer cells, the dose affecting healthy tissue can be reduced and the dose to the tumor can be increased. This improves the chances of curing the disease.


Ann-Charlott Steffen and her associates have developed an affibody molecule that binds to the protein HER-2, which primarily occurs in cancer cells from patients with aggressive forms of breast cancer. The scientists have attached radioactivity to the affibody molecules, so that they can visualize tumors and metastases and also treat tumors with the local dose of radiation provided by this radioactivity.

Ann-Charlott Steffen shows that the HER-2-binding affibody molecules attach to cancer cells with the HER-2 target on their surface, both in cell cultures and in mouse tumors. The research team has also found that the radioactivity in mouse tumors can be used to make these tumors visible in a gamma camera (see picture). Moreover, the results show that the radioactivity delivered by the affibody molecules can be used to kill tumor cells in cell cultures.

Affibody molecules are tiny, which enables them to enter tumors and be rapidly distributed in the body, unlike antibodies, which are normally used in target-seeking therapy and visualization. What’s more, affibody molecules are relatively easy to develop for virtually any target and can therefore in all probability be used for visualizing and treating many different forms of cancer.

“I hope these findings will lead to new possibilities of visualizing and treating distributed tumor diseases so that more cancer patients will be able to survive,” says Ann-Charlott Steffen.

Linda Nohrstedt | alfa
Further information:
http://info.uu.se/press.nsf/pm/new.targetseeking.idAE4.html

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>