Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bacteria make bandage glow

07.11.2001


A microelectronic sensor may alert doctors to bacterial hazards.


Warning colours: bacteria make silicon wafers glow.
© University of Rochester


Silicon could leave a 100-year-old staining technique standing.
© University of Rochester



Smart bandages could soon alert doctors to the presence of certain bacteria in a wound by glowing different colours. Researchers in the United States have created a tiny device that emits faint light of two colours in response to two types of bug1.

Benjamin Miller, of the University of Rochester in New York State, and colleagues hope that a refined sensor might ultimately generate an instant and easily recognizable array of colours that signify dangerous or antibiotic-resistant strains. So far, the device produces only a very small colour change, which is not detectable with the naked eye.


Currently, the faint glow alters only in the presence of ’Gram-negative’ bacteria. Most bacteria are either ’Gram-positive’ or Gram-negative; a dye called crystal violet stains Gram-positive bacteria blue-violet and Gram-negative bacteria red. This staining procedure was discovered in 1884 by the Danish biologist Hans Christian Joachim Gram and is still used today to distinguish the two cell types.

Differences in the chemical composition of the bacteria’s cell walls cause the dye to be taken up differently. A consequence of these differences is that Gram-positive bacteria are more susceptible to antibiotics, so the test can still be useful for treating infections.

Miller’s team hope to replace the cumbersome staining procedure with a simple process that registers the difference instantly and in situ. To develop the sensor, the team collaborated with Philippe Fauchet, also at Rochester, a specialist in silicon-based light-emitting devices.

Researchers like Fauchet are primarily interested in making silicon glow, to render light-based fibre-optic telecommunication compatible with silicon-chip micorelectronics. Silicon is usually a very poor light emitter, but it can be persuaded by etching it with acid to give it a porous, sponge-like structure.

Fauchet and the team found that, when Gram-negative bacteria stick to the surface of porous silicon, the colour of the light emitted changes slightly. The researchers make the silicon attract Gram-negative, but not Gram-positive, bacteria by coating it with specially designed molecules that hook chemical groups only present on Gram-negative microbes.

The team is now searching for molecular hooks that are specific to individual families of hazardous bacteria, such as Salmonella and Listeria.

References
  1. Chan, S., Horner, S. R., Fauchet, P. M. & Miller, B. L. Identification of Gram negative bacteria using nanoscale silicon microcavities. Journal of the American Chemical Society in the press (2001).

PHILIP BALL | © Nature News Service
Further information:
http://www.nature.com/nsu/011108/011108-7.html

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>