Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists step closer to new treatments for river blindness

18.04.2006


Veterinary scientists in Liverpool have found that some African cattle have natural immunity to a parasite, similar to that which causes river blindness in humans.

These new findings, by scientists at the University’s Faculty of Veterinary Science and the Liverpool School of Tropical Medicine, indicate that it may be possible to vaccinate humans against River Blindness. The disease causes blindness in thousands of people in some of the poorest countries in the world, particularly in West and Central Africa.

River blindness, or onchocerciasis, is caused by a parasitic worm and leads to severe itching of the skin and lesions of the eye which can result in blindness. The parasite is spread by black flies which breed in rivers and deposit the larvae of the worm into the person they bite. The disease develops over a long period of time, particularly in young adults, eventually preventing them from working and farming and hence feeding themselves and rearing their families.



Professor Sandy Trees, at the University’s Faculty of Veterinary Science, said: “Onchocerciasis has been the target of major international efforts to control and ultimately eradicate it, but it still presents a huge burden to health in many impoverished countries. To see if a vaccine is feasible for the disease we looked at whether immunity exists naturally and whether it can be induced.”

The team investigated immunity in cattle infected with a very closely related worm - Onchocerca ochengi - that causes lumps to appear on the animal’s skin but does not cause blindness or illness. Examining infected cattle in Cameroon, the team found that some cows naturally develop resistance to Onchocerca ochengi.

They also showed that cattle which were normally susceptible to infection could be successfully immunised using a vaccine composed of minute parasite larvae, weakened by a controlled dose of radiation in the laboratory. After two years of natural exposure to infected black flies, the number of worms in vaccinated cattle was far lower than in unvaccinated animals.

Professor Trees added: “Although the immunisation method that we tested in cattle would not be suitable for human use, this research provides the first proof that immunisation against onchocerciasis is possible and hence it may be feasible to protect humans from the parasite using some form of vaccination.”

There is currently no safe drug available to cure the disease fully as treatments only kill the young Onchocerca volvulus worms and not the adults. Researchers are now looking to further understanding of how some cattle develop natural immunity when some do not, which will assist in targeting potential treatments for River Blindness.

The research, funded by the Edna McConnell Clark Foundation, is published in Proceedings of the National Academy of Sciences of the USA and can be viewed at http://www.pnas.org/current.shtml

Samantha Martin | alfa
Further information:
http://www.liv.ac.uk/newsroom
http://www.pnas.org/current.shtml

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Innovative LED High Power Light Source for UV

22.06.2017 | Physics and Astronomy

Mathematical confirmation: Rewiring financial networks reduces systemic risk

22.06.2017 | Business and Finance

Spin liquids − back to the roots

22.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>