Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Getting to the heart of cardiovascular diseases

13.04.2006


A new collaboration covers the spectrum from molecules to therapies



Today three research organisations announce the merging of their expertise to fight cardiovascular diseases, which are among the most common health problems and causes of death in the world. The Magdi Yacoub Institute (MYI) at the UK’s Harefield Heart Science Centre, Imperial College London, and a unit of the European Molecular Biology Laboratory (EMBL) near Rome will work together to connect discoveries in basic research to new therapies and treatments.

“The medicine of the future will link discoveries about genes and the body’s healing mechanisms to prevention and therapies for diseases,” says Nadia Rosenthal, who heads EMBL’s Mouse Biology Unit in Monterotondo. “With the help of our transgenic mouse models for heart disease we can investigate the genes that play a role in the development of heart defects and this knowledge can then form the basis for clinical studies with patients.”


Sir Magdi Yacoub, founder and Director of Research at the Harefield Heart Science Centre funded by the MYI is one of the world’s foremost experts in the fields of organ transplantations and heart research. He established the largest heart and lung transplantation programme in the world at Harefield Hospital. The Heart Science Centre, which is operated collaboratively by the MYI, the Royal Brompton & Harefield Hospital Trust and the National Heart and Lung Institute at Imperial College, already has several research groups devoted to various aspects of heart disease, ranging from molecular and cell biology up to tissue engineering of heart valves. The new collaboration arose from contacts between Yacoub and Rosenthal, who has developed models of heart disease and tissue regeneration in mice.

“Basic and clinical research have traditionally been quite separate, and today there’s still a considerable gap,” Yacoub says. “Pooling the resources and expertise of our complementary institutes in this new collaboration we will bridge this gap. In this way we can obtain the integrated understanding of the cardiovascular system that we need to transfer what we have learned about heart diseases in the laboratory to patients as soon as possible.”

The collaboration will initially run for four years and will formalize joint research projects between the Yacoub and Rosenthal laboratories. One focus will be to study the molecular mechanisms that lead to heart failure, in hopes of finding ways to intervene. Another topic will be to investigate the molecular and cellular basis of new types of therapies, developed at the Heart Science Centre, which have been effective in reversing damage after heart failure. Finally, there will be a focus on heart transplantation and tissue engineering, aiming towards regenerative therapies.

Alongside research, the project will promote mutual education and exchanges of personnel, including a series of interdisciplinary courses and symposia.

The new collaboration builds on the existing strong connections between Imperial College London and EMBL. “This new centre of excellence for biomedical research will strengthen the close relations between the institutes and leads the way for many more collaborations in different research areas”, says Professor Stephen Smith, Principal of the Faculty of Medicine at Imperial College London.

Anna-Lynn Wegener | alfa
Further information:
http://www.embl.de
http://www.embl.org/aboutus/news/press/2006/10apr06/index.html

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Copper hydroxide nanoparticles provide protection against toxic oxygen radicals in cigarette smoke

29.05.2017 | Life Sciences

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>