Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Getting to the heart of cardiovascular diseases

13.04.2006


A new collaboration covers the spectrum from molecules to therapies



Today three research organisations announce the merging of their expertise to fight cardiovascular diseases, which are among the most common health problems and causes of death in the world. The Magdi Yacoub Institute (MYI) at the UK’s Harefield Heart Science Centre, Imperial College London, and a unit of the European Molecular Biology Laboratory (EMBL) near Rome will work together to connect discoveries in basic research to new therapies and treatments.

“The medicine of the future will link discoveries about genes and the body’s healing mechanisms to prevention and therapies for diseases,” says Nadia Rosenthal, who heads EMBL’s Mouse Biology Unit in Monterotondo. “With the help of our transgenic mouse models for heart disease we can investigate the genes that play a role in the development of heart defects and this knowledge can then form the basis for clinical studies with patients.”


Sir Magdi Yacoub, founder and Director of Research at the Harefield Heart Science Centre funded by the MYI is one of the world’s foremost experts in the fields of organ transplantations and heart research. He established the largest heart and lung transplantation programme in the world at Harefield Hospital. The Heart Science Centre, which is operated collaboratively by the MYI, the Royal Brompton & Harefield Hospital Trust and the National Heart and Lung Institute at Imperial College, already has several research groups devoted to various aspects of heart disease, ranging from molecular and cell biology up to tissue engineering of heart valves. The new collaboration arose from contacts between Yacoub and Rosenthal, who has developed models of heart disease and tissue regeneration in mice.

“Basic and clinical research have traditionally been quite separate, and today there’s still a considerable gap,” Yacoub says. “Pooling the resources and expertise of our complementary institutes in this new collaboration we will bridge this gap. In this way we can obtain the integrated understanding of the cardiovascular system that we need to transfer what we have learned about heart diseases in the laboratory to patients as soon as possible.”

The collaboration will initially run for four years and will formalize joint research projects between the Yacoub and Rosenthal laboratories. One focus will be to study the molecular mechanisms that lead to heart failure, in hopes of finding ways to intervene. Another topic will be to investigate the molecular and cellular basis of new types of therapies, developed at the Heart Science Centre, which have been effective in reversing damage after heart failure. Finally, there will be a focus on heart transplantation and tissue engineering, aiming towards regenerative therapies.

Alongside research, the project will promote mutual education and exchanges of personnel, including a series of interdisciplinary courses and symposia.

The new collaboration builds on the existing strong connections between Imperial College London and EMBL. “This new centre of excellence for biomedical research will strengthen the close relations between the institutes and leads the way for many more collaborations in different research areas”, says Professor Stephen Smith, Principal of the Faculty of Medicine at Imperial College London.

Anna-Lynn Wegener | alfa
Further information:
http://www.embl.de
http://www.embl.org/aboutus/news/press/2006/10apr06/index.html

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>