Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research provides clues to obesity’s cause and hints of new approach for curbing appetite

11.04.2006


Hot fudge sundaes and french fries aside, new research suggests obesity is due at least in part to an attraction between leptin, the hormone that signals the brain when to stop eating, and a protein more recently associated with heart disease. Reporting in Nature Medicine, University of Pittsburgh researchers provide evidence that C-reactive protein (CRP) not only binds to leptin but its hold impairs leptin’s role in controlling appetite. The results may help explain why obese people have so much trouble losing weight as well as point to a different target for the pharmaceutical treatment of obesity.



"There’s been a lot of interest in leptin as a means to curb appetite and reduce weight but clinical trials have had disappointing results. Our studies suggest an approach that should be further studied is one that disrupts the interaction between leptin and CRP, thereby restoring leptin’s ability for signaling. We need to better understand how this interaction works and investigate the underlying mechanisms involved," said Allan Z. Zhao, Ph.D., assistant professor of cell biology and physiology, University of Pittsburgh School of Medicine, and the study’s senior author.

Leptin is secreted by fat – the more fat, the more leptin – yet it is named for the Greek word leptos, which means "thin." In a region of the brain called the hypothalamus, leptin binds to receptors residing on the surface of neurons, setting off signals that tell the brain to stop eating and the body to expend energy by burning calories. While obese people produce much higher levels of leptin than thin and normal-weight individuals, they are somehow resistant to its effects. Dr. Zhao and his co-authors believe the binding of CRP to leptin may be the reason this is so. Their argument seems all the more plausible since CRP also is elevated in obese people. CRP, which is produced by the liver and typically rises as part of the immune system’s inflammatory response, is gaining favor as a marker for hypertension and heart disease risk, known complications of obesity.


"We know that CRP binds to leptin, and this impairs its signaling, but we don’t know how this is so. It may be that the coupling of the two makes crossing the blood-brain barrier difficult, or it may be that as a package it can’t bind to leptin receptors in the brain," suggested Dr. Zhao.

Dr. Zhao and his collaborators sought to find factors normally circulating in blood that could inhibit leptin. CRP was the most potent of the five serum leptin-interacting proteins they identified.

In one set of studies, the researchers delivered human leptin continuously for six days into mice with receptors for leptin but without the ability to produce it. As expected, the plump mice ate less and lost weight, and their blood glucose levels normalized. Infusions containing both leptin and high doses of CRP blocked the action of leptin. The mice continued feasting, getting even fatter, and were no longer protected against diabetes. Giving CRP alone affected neither food intake nor body weight.

In a different experiment, the researchers found that when exposed to leptin, human liver cells increased their expression of CRP, suggesting that appetite may be regulated through a feedback loop that includes the liver in addition to the brain and fat cells that secrete leptin.

One of the many questions yet to be answered is whether too much fat increases CRP or if it’s the high levels of CRP that make one fat. Dr. Zhao and his team are continuing their laboratory studies but they also plan to follow the outcomes of obese patients who are being treated with statin drugs, such as Lipitor and Zocor, for high cholesterol. Recent studies have found that statin drugs lower levels of CRP as well. Working with David E. Kelly, M.D., professor of medicine and director of the Obesity and Nutrition Research Center at the University of Pittsburgh and a co-author of the current paper, Dr. Zhao hopes to learn if such drugs might also help in reducing weight.

Lisa Rossi | EurekAlert!
Further information:
http://www.upmc.edu

More articles from Health and Medicine:

nachricht Tracking movement of immune cells identifies key first steps in inflammatory arthritis
23.01.2017 | Massachusetts General Hospital

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>