Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research provides clues to obesity’s cause and hints of new approach for curbing appetite

11.04.2006


Hot fudge sundaes and french fries aside, new research suggests obesity is due at least in part to an attraction between leptin, the hormone that signals the brain when to stop eating, and a protein more recently associated with heart disease. Reporting in Nature Medicine, University of Pittsburgh researchers provide evidence that C-reactive protein (CRP) not only binds to leptin but its hold impairs leptin’s role in controlling appetite. The results may help explain why obese people have so much trouble losing weight as well as point to a different target for the pharmaceutical treatment of obesity.



"There’s been a lot of interest in leptin as a means to curb appetite and reduce weight but clinical trials have had disappointing results. Our studies suggest an approach that should be further studied is one that disrupts the interaction between leptin and CRP, thereby restoring leptin’s ability for signaling. We need to better understand how this interaction works and investigate the underlying mechanisms involved," said Allan Z. Zhao, Ph.D., assistant professor of cell biology and physiology, University of Pittsburgh School of Medicine, and the study’s senior author.

Leptin is secreted by fat – the more fat, the more leptin – yet it is named for the Greek word leptos, which means "thin." In a region of the brain called the hypothalamus, leptin binds to receptors residing on the surface of neurons, setting off signals that tell the brain to stop eating and the body to expend energy by burning calories. While obese people produce much higher levels of leptin than thin and normal-weight individuals, they are somehow resistant to its effects. Dr. Zhao and his co-authors believe the binding of CRP to leptin may be the reason this is so. Their argument seems all the more plausible since CRP also is elevated in obese people. CRP, which is produced by the liver and typically rises as part of the immune system’s inflammatory response, is gaining favor as a marker for hypertension and heart disease risk, known complications of obesity.


"We know that CRP binds to leptin, and this impairs its signaling, but we don’t know how this is so. It may be that the coupling of the two makes crossing the blood-brain barrier difficult, or it may be that as a package it can’t bind to leptin receptors in the brain," suggested Dr. Zhao.

Dr. Zhao and his collaborators sought to find factors normally circulating in blood that could inhibit leptin. CRP was the most potent of the five serum leptin-interacting proteins they identified.

In one set of studies, the researchers delivered human leptin continuously for six days into mice with receptors for leptin but without the ability to produce it. As expected, the plump mice ate less and lost weight, and their blood glucose levels normalized. Infusions containing both leptin and high doses of CRP blocked the action of leptin. The mice continued feasting, getting even fatter, and were no longer protected against diabetes. Giving CRP alone affected neither food intake nor body weight.

In a different experiment, the researchers found that when exposed to leptin, human liver cells increased their expression of CRP, suggesting that appetite may be regulated through a feedback loop that includes the liver in addition to the brain and fat cells that secrete leptin.

One of the many questions yet to be answered is whether too much fat increases CRP or if it’s the high levels of CRP that make one fat. Dr. Zhao and his team are continuing their laboratory studies but they also plan to follow the outcomes of obese patients who are being treated with statin drugs, such as Lipitor and Zocor, for high cholesterol. Recent studies have found that statin drugs lower levels of CRP as well. Working with David E. Kelly, M.D., professor of medicine and director of the Obesity and Nutrition Research Center at the University of Pittsburgh and a co-author of the current paper, Dr. Zhao hopes to learn if such drugs might also help in reducing weight.

Lisa Rossi | EurekAlert!
Further information:
http://www.upmc.edu

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>