Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research may explain why some who receive growth hormone therapy develop colon polyps

10.04.2006


The use of growth hormone therapy has been linked in some people to the development of colon polyps, a possible precursor to colorectal cancer – but medical researchers have debated the extent of a cancer risk.



In addition, the reason for a polyp link to growth hormone has been unclear. But new research from the University of North Carolina at Chapel Hill indicates the probable answer: loss of function of one of a pair of genes that normally would inhibit growth hormone signals inside the cell.

The study also offers a possible molecular marker that could help determine which people taking growth hormone therapy are at increased risk for colon polyps. Researchers already know that colon polyps tend to occur in people who already have excessive amounts of growth hormone, such as those with a disease called acromegaly, or gigantism.


A report of the study appears in the April issue of the medical journal Endocrinology.

Study senior author Dr. P. Kay Lund, professor of cell and molecular physiology within UNC’s School of Medicine and a member of the UNC Lineberger Comprehensive Cancer Center, said she and her team had been interested in looking at the effect of a newly discovered inhibitor of cellular growth hormone signaling, suppressor of cytokine signaling-2, or SOCS2.

This molecule limits growth hormone action on the body and organ growth, but its role in growth hormone action on intestine is unknown, Lund said.

"Much of the work on SOCS2 had been done in cell cultures. We wanted to study it in vivo, in laboratory animals, with a focus on how it stops the action of cellular growth hormone."

The researchers thought an ideal way to study this issue would be to use an animal model of acromegaly, laboratory mice having excessive amounts of growth hormone.

The animals were crossed with animals in which the SOCS2 gene was deleted. The breeding generated animals with excessive growth hormone and one or two functional SOCS2 genes, but none with excessive growth hormone and no SOCS2 genes, an unexpected result.

"This meant that excessive growth hormone and no functional SOCS2 is incompatible with successful embryonic development," Lund said.

But there was another surprise: While colon polyps did not develop in animals with excessive growth hormone and two functional SOCS genes, multiple polyps did develop in animals with excessive growth hormone and only one functioning SOCS2 gene.

"We discovered that losing this one copy of SOCS2, this ’haplotype insufficiency,’ is enough to cause spontaneous polyp formation in these animals," Lund said, adding that the findings may have implications for humans.

"Haplotype insufficiency animal models are much closer to the normal human variation. Animals expressing just 50 percent normal levels of a protein can be thought of as reflecting the physiological variation that occurs in the general population."

According to Lund, expression levels of SOCS2 measured in, say, 100 people would almost certainly vary by at least 50 percent.

"So this really raises the issue that in a situation of growth hormone excess, such as acromegaly or, possibly, growth hormone therapy, SOCS2 may really be fundamental to dictating your risk of getting abnormalities in the colon."

On the other hand, Lund’s research may apply to the variations found in response to growth hormone therapy for the gastrointestinal tract. This would include people with short-bowel syndrome, a group of problems affecting individuals who have had half or more of their small intestine surgically removed. Many people with short bowel syndrome are malnourished because their remaining small intestine is unable to absorb enough water, vitamins and other nutrients from food.

"What has been a puzzle there is that the response to growth hormone in these patients is very variable. Some seem to respond well and get a great benefit from this therapy, and some people don’t respond well," Lund said.

"And we found that animals having 50 percent of normal expression levels of SOCS2 show much greater small intestinal growth to growth hormone therapy. So if low SOCS2 enhances the response of the small intestine to growth hormone, it says that patients that have lower SOCS2 may be the ones who favorably respond to this therapy."

Thus, depending on the clinical situation, levels of SOCS2 would either predict who might be at greater risk for colon polyps in the presence of an excess of growth hormone and who might best respond to growth hormone therapy for gastrointestinal conditions such as short bowel syndrome.

"Our future research with SOCS2 will be aimed at studies on human tissue samples to test variations in levels of SOCS2 in the intestine to predict risk of colonic polyps or the response of short bowel syndrome patients to therapeutic growth hormone. Future animal studies will test the role of SOCS2 in cancer models," Lund said.

UNC co-authors with Lund were lead author Dr. Carmen Michaylira, a former graduate student in Lund’s lab and now at the University of Pennsylvania; Nicole Ramocki, graduate student; Dr. James Simmons, research associate in cell and molecular physiology; C. Kirby Tanner, first-year medical student; Kirk McNaughton, research analyst in cell and molecular physiology; and Dr. John Woosley, asssociate professor of pathology and laboratory medicine. Co-author Dr. Christopher Greenhalgh from the Walter and Eliza Hall Institute in Melbourne, Australia, was an essential collaborator on the SOCS2 work.

Leslie H. Lang | EurekAlert!
Further information:
http://www.med.unc.edu

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>