Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Type 2 diabetics’ acidity heightens risk for kidney stones

06.04.2006


People with type 2 diabetes have highly acidic urine, a metabolic feature that explains their greater risk for developing uric-acid kidney stones, researchers at UT Southwestern Medical Center have found.



The study – the first to compare the urinary biochemical characteristics of type 2 diabetics with those of normal volunteers – is available online and will be published in the May issue of the Journal of the American Society of Nephrology.

Individuals with type 2 diabetes (non-insulin dependent diabetes mellitus) are at increased risk for developing kidney stones in general, and have a particular risk for uric-acid stones. The mechanisms for this greater risk were previously not entirely understood. This new study demonstrates that the propensity for type 2 diabetics to develop uric-acid stones is elevated because their urine is highly acidic.


"Our next step is to find out what causes type 2 diabetics to have an abnormally acidic urine, and what other urinary factors protect some diabetics who do not form uric-acid stones," said Dr. Mary Ann Cameron, the paper’s lead author and a postdoctoral trainee in internal medicine.

Obesity and a diet rich in animal protein are associated with abnormally acidic urine. In earlier studies, UT Southwestern researchers also concluded that uric-acid stones are associated with insulin resistance and type 2 diabetes.

But when researchers in this latest study accounted for these components, type 2 diabetics continued to have more acidic urine levels when compared to nondiabetics. These findings suggest that other factors associated with type 2 diabetes or insulin resistance account for the overly acidic urine in this population.

"Diet intake and obesity, those two factors alone, don’t explain the whole picture," said Dr. Naim Maalouf, an author and assistant professor of internal medicine. "So, other unrecognized factors may play a role."

Dr. Khashayar Sakhaee, senior author of the study and chief of mineral metabolism, said: "Our group at UT Southwestern was the first to determine that the more overweight a person is the more likely he or she is to form uric-acid kidney stones."

More than 18 million people in the United States live with diabetes, a chronic disease that affects the body’s ability to produce or respond to insulin and that can lead to life-threatening illness, including heart disease and stroke.

Kidney stones are solid deposits that form in the kidneys from substances excreted in urine. When waste materials in urine do not dissolve completely, microscopic particles begin to form and, over time, grow into stones. These solid deposits can remain in the kidney or they can break loose and travel down the urinary tract. Small stones can pass out of the body naturally, but larger stones can get stuck in a ureter, the bladder or the urethra, possibly blocking the flow of urine and often causing intense pain.

Uric acid stones are more difficult to diagnose than other types of stones because they don’t show up on regular abdominal X-rays, often delaying the diagnosis and leading to the continued growth of the stone.

Connie Piloto | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Health and Medicine:

nachricht Nanoparticles as a Solution against Antibiotic Resistance?
15.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>