Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Type 2 diabetics’ acidity heightens risk for kidney stones

06.04.2006


People with type 2 diabetes have highly acidic urine, a metabolic feature that explains their greater risk for developing uric-acid kidney stones, researchers at UT Southwestern Medical Center have found.



The study – the first to compare the urinary biochemical characteristics of type 2 diabetics with those of normal volunteers – is available online and will be published in the May issue of the Journal of the American Society of Nephrology.

Individuals with type 2 diabetes (non-insulin dependent diabetes mellitus) are at increased risk for developing kidney stones in general, and have a particular risk for uric-acid stones. The mechanisms for this greater risk were previously not entirely understood. This new study demonstrates that the propensity for type 2 diabetics to develop uric-acid stones is elevated because their urine is highly acidic.


"Our next step is to find out what causes type 2 diabetics to have an abnormally acidic urine, and what other urinary factors protect some diabetics who do not form uric-acid stones," said Dr. Mary Ann Cameron, the paper’s lead author and a postdoctoral trainee in internal medicine.

Obesity and a diet rich in animal protein are associated with abnormally acidic urine. In earlier studies, UT Southwestern researchers also concluded that uric-acid stones are associated with insulin resistance and type 2 diabetes.

But when researchers in this latest study accounted for these components, type 2 diabetics continued to have more acidic urine levels when compared to nondiabetics. These findings suggest that other factors associated with type 2 diabetes or insulin resistance account for the overly acidic urine in this population.

"Diet intake and obesity, those two factors alone, don’t explain the whole picture," said Dr. Naim Maalouf, an author and assistant professor of internal medicine. "So, other unrecognized factors may play a role."

Dr. Khashayar Sakhaee, senior author of the study and chief of mineral metabolism, said: "Our group at UT Southwestern was the first to determine that the more overweight a person is the more likely he or she is to form uric-acid kidney stones."

More than 18 million people in the United States live with diabetes, a chronic disease that affects the body’s ability to produce or respond to insulin and that can lead to life-threatening illness, including heart disease and stroke.

Kidney stones are solid deposits that form in the kidneys from substances excreted in urine. When waste materials in urine do not dissolve completely, microscopic particles begin to form and, over time, grow into stones. These solid deposits can remain in the kidney or they can break loose and travel down the urinary tract. Small stones can pass out of the body naturally, but larger stones can get stuck in a ureter, the bladder or the urethra, possibly blocking the flow of urine and often causing intense pain.

Uric acid stones are more difficult to diagnose than other types of stones because they don’t show up on regular abdominal X-rays, often delaying the diagnosis and leading to the continued growth of the stone.

Connie Piloto | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Health and Medicine:

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Better equipped in the fight against lung cancer
16.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>