Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists apply a mathematical method that refines the contour of tumors to image analysis to improve their treatment

05.04.2006


Cancer treatment needs refinement. Any method aimed at treating a tumor, from extirpation to radiotherapy, requires a precise knowledge of the cancerous tumor margins so that the intervention on it may be performed in such a way that the possibilities of healing are maximised and the effects on surrounding healthy tissues are minimised. A group of researchers from the Department of Mathematics at the Universitat Jaume I in Castelló have implemented a mathematical method that is applied to medical imaging analysis, which enables to determine the margins of a tumor in the prostate, lung or bladder.



In most cases, the task of delimitating the contour of a tumor is carried out manually by a specialist. According to his or her experience, the doctor draws the perimeter within which he or she locates the cancerous tissue on an image obtained by computerised axial tomography (CAT) or magnetic resonance (MR) images. This perimeter may vary slightly depending on the professional who traces it. The method developed by the mathematicians at the UJI does away with such a great subjective variability, and enables a single, more objective and standardised confidence interval to be obtained for each tumor type and patient depending on his or her characteristics.

“What we have done is to define an average and most adjusted confidence interval possible from a series of contours delineated by various professionals on one same tumor, in such a way that it only surrounds the tissue that is considered cancerous and leaves any surrounding tissue which is not to be submitted to treatment unharmed”, as Ximo Gual, the person in charge of the research, explains.


By combining concepts of geometry, statistics and probability, the scientists at the UJI in cooperation with the radiotherapist oncology service at the Hospital Universitari La Fe in Valencia have developed a standard method for prostate cancer cases in patients aged 40-60 years. “All that remains now is to incorporate these mathematical formulae into the software used by medical teams”, Gual points out. The idea is that the machine can automatically write the confidence interval on the contour of the tumor previously drawn by the specialist.

However, the subjectivity of the health professionals is not the only variable that affects the task of determining the margins of a tumor. Indeed, this internal organ motion itself hinders the identification and subsequent monitoring of cancerous tissue. This is particularly obvious in the case of lungs. The problem is that the CAT or MR images corresponding to the same patient but taken on different days do not fit owing to internal organ motion, even though the external cut-off at which the images are taken is the same on each occasion.

“Our aim is to make progress in our research in order to achieve a 3D contouring of the tumor. The idea is to rebuild the tumor in 3D from crosscut images, and to define the three-dimensional confidence interval that accounts for the variability due to internal organ motion”, Ximo Gual explains.

Hugo Cerdà | alfa
Further information:
http://www.uji.es/ocit/noticies/detall&id_a=6081899

More articles from Health and Medicine:

nachricht How cancer metastasis happens: Researchers reveal a key mechanism
19.01.2018 | Weill Cornell Medicine

nachricht Researchers identify new way to unmask melanoma cells to the immune system
17.01.2018 | Duke University Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Thanks for the memory: NIST takes a deep look at memristors

22.01.2018 | Materials Sciences

Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments

22.01.2018 | Earth Sciences

Saarland University bioinformaticians compute gene sequences inherited from each parent

22.01.2018 | Life Sciences

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>