Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists apply a mathematical method that refines the contour of tumors to image analysis to improve their treatment

05.04.2006


Cancer treatment needs refinement. Any method aimed at treating a tumor, from extirpation to radiotherapy, requires a precise knowledge of the cancerous tumor margins so that the intervention on it may be performed in such a way that the possibilities of healing are maximised and the effects on surrounding healthy tissues are minimised. A group of researchers from the Department of Mathematics at the Universitat Jaume I in Castelló have implemented a mathematical method that is applied to medical imaging analysis, which enables to determine the margins of a tumor in the prostate, lung or bladder.



In most cases, the task of delimitating the contour of a tumor is carried out manually by a specialist. According to his or her experience, the doctor draws the perimeter within which he or she locates the cancerous tissue on an image obtained by computerised axial tomography (CAT) or magnetic resonance (MR) images. This perimeter may vary slightly depending on the professional who traces it. The method developed by the mathematicians at the UJI does away with such a great subjective variability, and enables a single, more objective and standardised confidence interval to be obtained for each tumor type and patient depending on his or her characteristics.

“What we have done is to define an average and most adjusted confidence interval possible from a series of contours delineated by various professionals on one same tumor, in such a way that it only surrounds the tissue that is considered cancerous and leaves any surrounding tissue which is not to be submitted to treatment unharmed”, as Ximo Gual, the person in charge of the research, explains.


By combining concepts of geometry, statistics and probability, the scientists at the UJI in cooperation with the radiotherapist oncology service at the Hospital Universitari La Fe in Valencia have developed a standard method for prostate cancer cases in patients aged 40-60 years. “All that remains now is to incorporate these mathematical formulae into the software used by medical teams”, Gual points out. The idea is that the machine can automatically write the confidence interval on the contour of the tumor previously drawn by the specialist.

However, the subjectivity of the health professionals is not the only variable that affects the task of determining the margins of a tumor. Indeed, this internal organ motion itself hinders the identification and subsequent monitoring of cancerous tissue. This is particularly obvious in the case of lungs. The problem is that the CAT or MR images corresponding to the same patient but taken on different days do not fit owing to internal organ motion, even though the external cut-off at which the images are taken is the same on each occasion.

“Our aim is to make progress in our research in order to achieve a 3D contouring of the tumor. The idea is to rebuild the tumor in 3D from crosscut images, and to define the three-dimensional confidence interval that accounts for the variability due to internal organ motion”, Ximo Gual explains.

Hugo Cerdà | alfa
Further information:
http://www.uji.es/ocit/noticies/detall&id_a=6081899

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>