Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists apply a mathematical method that refines the contour of tumors to image analysis to improve their treatment

05.04.2006


Cancer treatment needs refinement. Any method aimed at treating a tumor, from extirpation to radiotherapy, requires a precise knowledge of the cancerous tumor margins so that the intervention on it may be performed in such a way that the possibilities of healing are maximised and the effects on surrounding healthy tissues are minimised. A group of researchers from the Department of Mathematics at the Universitat Jaume I in Castelló have implemented a mathematical method that is applied to medical imaging analysis, which enables to determine the margins of a tumor in the prostate, lung or bladder.



In most cases, the task of delimitating the contour of a tumor is carried out manually by a specialist. According to his or her experience, the doctor draws the perimeter within which he or she locates the cancerous tissue on an image obtained by computerised axial tomography (CAT) or magnetic resonance (MR) images. This perimeter may vary slightly depending on the professional who traces it. The method developed by the mathematicians at the UJI does away with such a great subjective variability, and enables a single, more objective and standardised confidence interval to be obtained for each tumor type and patient depending on his or her characteristics.

“What we have done is to define an average and most adjusted confidence interval possible from a series of contours delineated by various professionals on one same tumor, in such a way that it only surrounds the tissue that is considered cancerous and leaves any surrounding tissue which is not to be submitted to treatment unharmed”, as Ximo Gual, the person in charge of the research, explains.


By combining concepts of geometry, statistics and probability, the scientists at the UJI in cooperation with the radiotherapist oncology service at the Hospital Universitari La Fe in Valencia have developed a standard method for prostate cancer cases in patients aged 40-60 years. “All that remains now is to incorporate these mathematical formulae into the software used by medical teams”, Gual points out. The idea is that the machine can automatically write the confidence interval on the contour of the tumor previously drawn by the specialist.

However, the subjectivity of the health professionals is not the only variable that affects the task of determining the margins of a tumor. Indeed, this internal organ motion itself hinders the identification and subsequent monitoring of cancerous tissue. This is particularly obvious in the case of lungs. The problem is that the CAT or MR images corresponding to the same patient but taken on different days do not fit owing to internal organ motion, even though the external cut-off at which the images are taken is the same on each occasion.

“Our aim is to make progress in our research in order to achieve a 3D contouring of the tumor. The idea is to rebuild the tumor in 3D from crosscut images, and to define the three-dimensional confidence interval that accounts for the variability due to internal organ motion”, Ximo Gual explains.

Hugo Cerdà | alfa
Further information:
http://www.uji.es/ocit/noticies/detall&id_a=6081899

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>