Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First direct mechanical communication of mitochondria, cardiomyocyte nucleus shown

04.04.2006


In a paper being presented in two American Physiological Society sessions at Experimental Biology 2006, a joint Estonian-French team demonstrated "for the first time that mitochondria are able to induce nuclear deformation, suggesting that mitochondria may mechanically regulate nuclear function."



The team, which has been collaborating for over 10 years, reported that it recently "found a very interesting and unexpected phenomenon: various substances which increase mitochondrial size, also increased contractile force of cardiac fibers," or myofibrils. This effect isn’t related to the mitochondrial energy production, they noted, and so a hypothesis was developed that "there might be in cardiac cells some form of mechanical signaling between organelles."

Vladimir Veksler, a former Soviet scientist who maintained his contacts with Estonian researchers after moving to Paris, said their latest research "shows that substances increasing the mitochondria can also compress the nuclear organelles, ensuring storage and treatment of genetic information."


Taken together, the results indicate that "the existence of such mechanical signaling between mitochondria and myofibrils opens a new possibility to search for drugs capable of increasing cardiac contractility," Veksler said.

*Presentations: The paper, "Direct mechanical communication between mitochondria and nucleus in cardiac cells," was chosen to be part of the "Physiological Genomics of Skeletal Muscle Adaptation in Health and Disease" Featured Topic session 199, sponsored by the APS Muscle Biology Group. Sunday April 2 at 10:30 a.m. in the Convention Center, Room 130, Moscone North. The paper will be presented at 11:15 a.m.

The research also will be presented 12:30-3 p.m. Monday April 3, APS Physiology Signaling in muscle session 486.6/board #C732. Research was performed by Allen Kaasik, Department of Pharmacology, University of Tartu, Estonia, who collaborates with Renée Ventura-Clapier and Vladimir Veksler of INSERM, University of Paris-Sud, France.

Health

Veksler said the team has been interested for many years in mechanisms of interaction between mitochondria and other organelles. They use "skinned cardiac fibers" whose outer membranes have been chemically removed which allows them to control the intracellular medium. They believed that in the tightly packed myocyte, that "mitochondria could push and compress nearby structures like myofibrils and modulate their functional properties."

This additional evidence of intracellular mechanical signaling "may have important physiological significance," Veksler said. He noted that a "number of studies indicate a sensitivity of nuclei to external mechanical forces and suggest that nuclear deformation could influence gene expression processes. Thus, we hypothesize that drugs or intracellular conditions inducing mitochrondrial swelling could by mechanical means influence gene expression.

"More studies are needed to explore this very intriguing and promising field of knowledge," he concluded.

In the experiment, the researchers found that in an artificial medium mimicking the cytosol, 10 micro-molar of valinomycin (a potassium ionophore that induces mitochondrial matrix swelling) decreased nuclear volume by a significant 12% ± 2%. And 150 micro-molar of diazoxide (a mitochondrial ATP-sensitive potassium channel opener) reduced nuclear volume a similar amount. "However, 150 micro-molar of 5-hydrooxydecanoate (thought to be a specific inhibitor of these channels), completely blocked the effect," according to the report, leading to the conclusion that: "mitochondria are able to induce nuclear deformation, suggesting that mitochondria may mechanically regulate nuclear function."

Next steps

Veksler said one idea that needs to be checked out is: If this mechanical communication changes nuclear geometry, does it also impact nuclear function, namely transcription?

Indeed, he said one reason for presenting their findings at Experimental Biology is to find collaborators interested in studying the relevant transcriptional processes.

Mayer Resnick | EurekAlert!
Further information:
http://www.the-aps.org

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>