Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Dangerous glucose-hungry cervical tumors can be detected using PET scans


Cervical cancers that take up a lot of blood sugar, or glucose, are more resistant to treatment than those that are less glucose-hungry, according to research at Washington University School of Medicine in St. Louis. The researchers also found that the high glucose-uptake tumors can be identified with PET scans, which are already routinely used to determine tumor size and lymph node involvement in cervical cancer patients.

PET scans monitor the amount of a radioactive glucose tracer absorbed by cells, so the brightness of the image reveals how much glucose a tumor takes up. The results of the research team’s analysis indicate that PET scans can be used to better determine prognosis in cervical cancer patients.

"Cervical tumors vary more in their glucose uptake than other kinds of cancer, making glucose uptake a very useful indicator for cervical cancers," says Perry W. Grigsby, M.D., a radiation oncologist with the Siteman Cancer Center at Washington University School of Medicine and Barnes-Jewish Hospital. "We found that the tumors with higher uptake were associated with lower survival rates and lower disease-free survival rates."

In a report published in the April issue of Gynecological Oncology, the researchers summarized their findings for 96 cervical cancer patients who underwent PET scans before radiation and chemotherapy were initiated.

Analysis showed that 71 percent of patients whose tumors had a glucose uptake value below the median value of 10.2 survived five years without a recurrence of their disease. In contrast, 52 percent of those whose glucose uptake measured above 10.2 went for five years without a recurrence.

Since submitting their findings, the team has continued their investigation with additional patients, who now number near 250. The trend of lower five-year disease-free survival with higher tumor glucose uptake has been born out in the additional patients.

Further, the continuing study has clearly demonstrated that the overall (disease-free and disease-recurring) five-year survival rate was lower in the group of patients whose tumor glucose uptake was above the median of 10.2.

"Our clinical experience has taught us that standard therapy, which includes both chemotherapy with cisplatin and radiation treatments, doesn’t seem to be able to cure these cancers if their glucose metabolism is high," says Grigsby, professor of radiation oncology, of nuclear medicine and of obstetrics and gynecology. "We don’t yet know what therapy will be more effective in these cases. For the time being, we’re closely watching the response of the tumor to treatment and surgically removing the tumor and surrounding tissue when necessary."

To improve treatment options in the future, Grigsby is initiating a study to uncover the cellular mechanisms that are altered in tumors that uptake a lot of glucose.

"I’ve looked at the proteins that transport glucose into tumor cells, and I haven’t seen any significant differences between the glucose transporters in tumors with high glucose uptake and those with low glucose uptake," Grigsby says. "So we’re taking a different approach.

We’re going to biopsy tumors over the course of treatment. Then we’ll look for which genes change activity during treatment. If we can find predictable changes, they may lead us to better treatments for the more-resistant cervical tumors."

Gwen Ericson | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>