Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dangerous glucose-hungry cervical tumors can be detected using PET scans

03.04.2006


Cervical cancers that take up a lot of blood sugar, or glucose, are more resistant to treatment than those that are less glucose-hungry, according to research at Washington University School of Medicine in St. Louis. The researchers also found that the high glucose-uptake tumors can be identified with PET scans, which are already routinely used to determine tumor size and lymph node involvement in cervical cancer patients.



PET scans monitor the amount of a radioactive glucose tracer absorbed by cells, so the brightness of the image reveals how much glucose a tumor takes up. The results of the research team’s analysis indicate that PET scans can be used to better determine prognosis in cervical cancer patients.

"Cervical tumors vary more in their glucose uptake than other kinds of cancer, making glucose uptake a very useful indicator for cervical cancers," says Perry W. Grigsby, M.D., a radiation oncologist with the Siteman Cancer Center at Washington University School of Medicine and Barnes-Jewish Hospital. "We found that the tumors with higher uptake were associated with lower survival rates and lower disease-free survival rates."


In a report published in the April issue of Gynecological Oncology, the researchers summarized their findings for 96 cervical cancer patients who underwent PET scans before radiation and chemotherapy were initiated.

Analysis showed that 71 percent of patients whose tumors had a glucose uptake value below the median value of 10.2 survived five years without a recurrence of their disease. In contrast, 52 percent of those whose glucose uptake measured above 10.2 went for five years without a recurrence.

Since submitting their findings, the team has continued their investigation with additional patients, who now number near 250. The trend of lower five-year disease-free survival with higher tumor glucose uptake has been born out in the additional patients.

Further, the continuing study has clearly demonstrated that the overall (disease-free and disease-recurring) five-year survival rate was lower in the group of patients whose tumor glucose uptake was above the median of 10.2.

"Our clinical experience has taught us that standard therapy, which includes both chemotherapy with cisplatin and radiation treatments, doesn’t seem to be able to cure these cancers if their glucose metabolism is high," says Grigsby, professor of radiation oncology, of nuclear medicine and of obstetrics and gynecology. "We don’t yet know what therapy will be more effective in these cases. For the time being, we’re closely watching the response of the tumor to treatment and surgically removing the tumor and surrounding tissue when necessary."

To improve treatment options in the future, Grigsby is initiating a study to uncover the cellular mechanisms that are altered in tumors that uptake a lot of glucose.

"I’ve looked at the proteins that transport glucose into tumor cells, and I haven’t seen any significant differences between the glucose transporters in tumors with high glucose uptake and those with low glucose uptake," Grigsby says. "So we’re taking a different approach.

We’re going to biopsy tumors over the course of treatment. Then we’ll look for which genes change activity during treatment. If we can find predictable changes, they may lead us to better treatments for the more-resistant cervical tumors."

Gwen Ericson | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Health and Medicine:

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

nachricht New type of blood cells work as indicators of autoimmunity
14.08.2017 | Instituto de Medicina Molecular

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>