Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Shining a light on an alternative treatment for MRSA

03.04.2006


Cosmetic considerations and a perceived lack of patent opportunities could be stopping the pharmaceutical and healthcare industries from investing in the development of a new therapy proven to be effective in the treatment of MRSA.



According to a leading scientist based at Liverpool John Moores University (LJMU) photodynamic or dye therapy could be an effective alternative therapy for the hospital superbug.

Around 5000 people die and many thousands more suffer long term complications in the UK every year as a result of infections caused by superbugs such as MRSA. These fatal bacterial infections are increasing because of drug resistance, most worryingly to vancomycin, the drug of last resort. Common disinfectant drugs, like mupirocin, are also becoming less and less effective.


Dr Mark Wainwright, a senior LJMU lecturer in medicinal chemistry, who has been researching the therapy for nearly 20 years, explained: “After decades of wonder drugs, man’s supremacy over the microbe is over. Over-prescription and misuse of antibacterial drugs are to blame for this rise in resistance and we urgently need to change the way in which we employ such valuable drugs.”

He continued: “Photodynamic therapy could be an effective alternative treatment. If antibiotics use a sniper’s approach to killing infections, dye therapy is like a hand grenade. Bacteria and viruses have no defence against the active oxygen it releases. The Darwinian argument of ‘survival of the fittest’ doesn’t apply because all of the bacterial cells are destroyed so they can’t develop resistance to the therapy. Its low human toxicity and the local/topical application of the drugs also mean that patients have fewer side effects.”

Photodynamic therapy (PDT) is a relatively straightforward and cheap therapy. It works by the topical application of light sensitive compounds (related to dyes) onto the infected area and then shining light onto it.

The light causes the dye to produce a highly reactive form of oxygen in situ, which if released close enough to a bacteria or virus, kills them, halting the infection.

The therapy doesn’t even require expensive lasers as the right wavelength can be provided by ordinary light sources.

At the moment, the therapy is limited to areas of the body accessible to light sources but this would still allow for the treatment of a wide range of bacterial diseases, skin infections, burns and wounds.

“An enormous amount of money is currently spent by the NHS every year on treating such conditions, many of which end up being colonised with MRSA,” said Dr Wainwright.

“These infections could be treated effectively using PDT out in the local community, helping prevent the introduction of potentially lethal infections into the hospital environment.”

Many of PDT’s light sensitive dyes – or photosensitisers – have been used clinically for a long time; many before the discovery of penicillin. One of the lead compounds, methylene blue, for example, was first used therapeutically in 1891 against malaria.

Photodynamic (dye) therapy has been successfully used to treat certain cancers for around 25 years, but so far the UK’s pharmaceutical and healthcare industries have been reluctant to investigate further uses.

Dr Wainwright believes that this is partly because photosensitisers are the poor relations in the pharmaceutical industry, often classified as textile dyes rather than drugs.

Potential profits are also limited because the dyes currently in use are already established, but novel compounds with new patent opportunities are available.

In addition, the effectiveness of photosensitisers as disinfectants has already been proved to great effect by the National Blood Service, who use photodisinfection to ensure the safety of blood plasma products.

Overseas, Russian scientists are using photosensitisers to treat multi-drug-resistant forms of TB, while dye therapy using another old dye, gentian violet, has been successful in the treatment of MRSA-infected patients in Japan.

So why hasn’t the UK’s pharmaceutical industry been more receptive?

Dr Wainwright believes cosmetic concerns may also be to blame. He explained: “There’s a general dislike of coloured staining medication and it’s true in the past patients were often heavily stained. But the stains are only temporary and as the number of life-threatening pathogens, such as MRSA, increases, surely this is a price worth paying if it saves lives?”

Dr Wainwright is now in pursuit of new funding to support clinical trials to test the efficacy of photobactericidal agents in the treatment of bacterial infections.

Shonagh Wilkie | alfa
Further information:
http://www.livjm.ac.uk

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>