Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Shining a light on an alternative treatment for MRSA

03.04.2006


Cosmetic considerations and a perceived lack of patent opportunities could be stopping the pharmaceutical and healthcare industries from investing in the development of a new therapy proven to be effective in the treatment of MRSA.



According to a leading scientist based at Liverpool John Moores University (LJMU) photodynamic or dye therapy could be an effective alternative therapy for the hospital superbug.

Around 5000 people die and many thousands more suffer long term complications in the UK every year as a result of infections caused by superbugs such as MRSA. These fatal bacterial infections are increasing because of drug resistance, most worryingly to vancomycin, the drug of last resort. Common disinfectant drugs, like mupirocin, are also becoming less and less effective.


Dr Mark Wainwright, a senior LJMU lecturer in medicinal chemistry, who has been researching the therapy for nearly 20 years, explained: “After decades of wonder drugs, man’s supremacy over the microbe is over. Over-prescription and misuse of antibacterial drugs are to blame for this rise in resistance and we urgently need to change the way in which we employ such valuable drugs.”

He continued: “Photodynamic therapy could be an effective alternative treatment. If antibiotics use a sniper’s approach to killing infections, dye therapy is like a hand grenade. Bacteria and viruses have no defence against the active oxygen it releases. The Darwinian argument of ‘survival of the fittest’ doesn’t apply because all of the bacterial cells are destroyed so they can’t develop resistance to the therapy. Its low human toxicity and the local/topical application of the drugs also mean that patients have fewer side effects.”

Photodynamic therapy (PDT) is a relatively straightforward and cheap therapy. It works by the topical application of light sensitive compounds (related to dyes) onto the infected area and then shining light onto it.

The light causes the dye to produce a highly reactive form of oxygen in situ, which if released close enough to a bacteria or virus, kills them, halting the infection.

The therapy doesn’t even require expensive lasers as the right wavelength can be provided by ordinary light sources.

At the moment, the therapy is limited to areas of the body accessible to light sources but this would still allow for the treatment of a wide range of bacterial diseases, skin infections, burns and wounds.

“An enormous amount of money is currently spent by the NHS every year on treating such conditions, many of which end up being colonised with MRSA,” said Dr Wainwright.

“These infections could be treated effectively using PDT out in the local community, helping prevent the introduction of potentially lethal infections into the hospital environment.”

Many of PDT’s light sensitive dyes – or photosensitisers – have been used clinically for a long time; many before the discovery of penicillin. One of the lead compounds, methylene blue, for example, was first used therapeutically in 1891 against malaria.

Photodynamic (dye) therapy has been successfully used to treat certain cancers for around 25 years, but so far the UK’s pharmaceutical and healthcare industries have been reluctant to investigate further uses.

Dr Wainwright believes that this is partly because photosensitisers are the poor relations in the pharmaceutical industry, often classified as textile dyes rather than drugs.

Potential profits are also limited because the dyes currently in use are already established, but novel compounds with new patent opportunities are available.

In addition, the effectiveness of photosensitisers as disinfectants has already been proved to great effect by the National Blood Service, who use photodisinfection to ensure the safety of blood plasma products.

Overseas, Russian scientists are using photosensitisers to treat multi-drug-resistant forms of TB, while dye therapy using another old dye, gentian violet, has been successful in the treatment of MRSA-infected patients in Japan.

So why hasn’t the UK’s pharmaceutical industry been more receptive?

Dr Wainwright believes cosmetic concerns may also be to blame. He explained: “There’s a general dislike of coloured staining medication and it’s true in the past patients were often heavily stained. But the stains are only temporary and as the number of life-threatening pathogens, such as MRSA, increases, surely this is a price worth paying if it saves lives?”

Dr Wainwright is now in pursuit of new funding to support clinical trials to test the efficacy of photobactericidal agents in the treatment of bacterial infections.

Shonagh Wilkie | alfa
Further information:
http://www.livjm.ac.uk

More articles from Health and Medicine:

nachricht The end of pneumonia? New vaccine offers hope
23.10.2017 | University at Buffalo

nachricht Scientists track ovarian cancers to site of origin: Fallopian tubes
23.10.2017 | Johns Hopkins Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>