Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

We’re learning night … and day

28.03.2006


We already knew that sleeping helped to reinforce what we’ve learned. But today, a study at the ULg demonstrates for the first time that the brain doesn’t wait until night to structure information. Day and night, the brain doesn’t stop (re)working what we learn.



Positron Emission Tomography (PET-scan) studies carried out recently at the ULg Cyclotron Research Centre have revealed the reactivation of cerebral activity associated with learning new information in humans while they sleep. (1,2) This supports the hypothesis of the role of sleep in memorizing.

Taking advantage of the new opportunities offered by 3 Tesla’s functional Magnetic Resonance Imaging (fMRI)(*), Philippe Peigneux and his colleagues at the University of Liege published findings this week in the international journal PLoS Biology (3). Their study revealed for the first time a phenomenon that occurs during active waking that is similar to reactivation of the cerebral activity linked to learning.


To arrive at this result, every half hour, they recorded (or scanned) the cerebral activity of volunteers while they performed a ten-minute auditive attention task, during two sessions spaced out over a few weeks. At each of these sessions, during the half hour between the first two scans of the attention task, the volunteer was given something new to learn. A third scan was then performed after a half-hour rest. During one of the two sessions, the learning consisted in the volunteer memorizing a route in a virtual city he or she was exploring on a computer. This spatial navigation task is known to be dependent on the hippocampus, a cerebral structure that plays a vital role in learning, and damage to which results in inability to memorize new facts (known as anterograde amnesia). The other session was devoted to acquisition by repetition (or procedural learning) of new visuomotor sequences. For this task, it is not necessary that the subject be aware of what he or she is learning, and its success depends mainly on the integrity of the striatum and the related motor regions.

Analysis of the results demonstrated that, compared with the first scan, the cerebral activity evoked by the auditive attention task during the second and third scans was systematically modified by the kind of learning experience that took place between the first and second scans, and this happened in the cerebral regions associated with this learning. Moreover, this post-learning cerebral activity evolves differently over time depending on the type of learning, and is related to the performance level achieved by the subjects when they are tested on the quality of their memory at the end of the session. These elements indicate active processing of the newly formed mnestic traces during the post-learning waking, which could occur at the same time as other cognitive tasks.

More generally, this study from the ULg Cyclotron Research Centre demonstrates for the first time that the human brain does not simply put newly acquired information in standby until there is a period of calm or sleep to strengthen them, but rather continues to process them dynamically as soon as the learning episode has ended, even if the brain has to face an uninterrupted series of completely different cognitive activities.

Philippe Peigneux, PhD | alfa
Further information:
http://biology.plosjournals.org/perlserv/?request=get-document&doi=10.1371/journal.pbio.0040100
http://www.ulg.ac.be

More articles from Health and Medicine:

nachricht Cholesterol-lowering drugs may fight infectious disease
22.08.2017 | Duke University

nachricht Once invincible superbug squashed by 'superteam' of antibiotics
22.08.2017 | University at Buffalo

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>