Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


We’re learning night … and day


We already knew that sleeping helped to reinforce what we’ve learned. But today, a study at the ULg demonstrates for the first time that the brain doesn’t wait until night to structure information. Day and night, the brain doesn’t stop (re)working what we learn.

Positron Emission Tomography (PET-scan) studies carried out recently at the ULg Cyclotron Research Centre have revealed the reactivation of cerebral activity associated with learning new information in humans while they sleep. (1,2) This supports the hypothesis of the role of sleep in memorizing.

Taking advantage of the new opportunities offered by 3 Tesla’s functional Magnetic Resonance Imaging (fMRI)(*), Philippe Peigneux and his colleagues at the University of Liege published findings this week in the international journal PLoS Biology (3). Their study revealed for the first time a phenomenon that occurs during active waking that is similar to reactivation of the cerebral activity linked to learning.

To arrive at this result, every half hour, they recorded (or scanned) the cerebral activity of volunteers while they performed a ten-minute auditive attention task, during two sessions spaced out over a few weeks. At each of these sessions, during the half hour between the first two scans of the attention task, the volunteer was given something new to learn. A third scan was then performed after a half-hour rest. During one of the two sessions, the learning consisted in the volunteer memorizing a route in a virtual city he or she was exploring on a computer. This spatial navigation task is known to be dependent on the hippocampus, a cerebral structure that plays a vital role in learning, and damage to which results in inability to memorize new facts (known as anterograde amnesia). The other session was devoted to acquisition by repetition (or procedural learning) of new visuomotor sequences. For this task, it is not necessary that the subject be aware of what he or she is learning, and its success depends mainly on the integrity of the striatum and the related motor regions.

Analysis of the results demonstrated that, compared with the first scan, the cerebral activity evoked by the auditive attention task during the second and third scans was systematically modified by the kind of learning experience that took place between the first and second scans, and this happened in the cerebral regions associated with this learning. Moreover, this post-learning cerebral activity evolves differently over time depending on the type of learning, and is related to the performance level achieved by the subjects when they are tested on the quality of their memory at the end of the session. These elements indicate active processing of the newly formed mnestic traces during the post-learning waking, which could occur at the same time as other cognitive tasks.

More generally, this study from the ULg Cyclotron Research Centre demonstrates for the first time that the human brain does not simply put newly acquired information in standby until there is a period of calm or sleep to strengthen them, but rather continues to process them dynamically as soon as the learning episode has ended, even if the brain has to face an uninterrupted series of completely different cognitive activities.

Philippe Peigneux, PhD | alfa
Further information:

More articles from Health and Medicine:

nachricht NIH scientists describe potential antibody treatment for multidrug-resistant K. pneumoniae
14.03.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht Researchers identify key step in viral replication
13.03.2018 | University of Pittsburgh Schools of the Health Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>