Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel vaccine approach stimulates protective immunity against listeria

21.03.2006


Could also protect against other intracellular bacterial pathogens



When bacterial pathogens attack the surface of a cell, vaccine-induced antibodies can mount a formidable defense and fend off the bad bugs. The trouble comes when antibodies cannot recognize the pathogen because the bacteria have infected the cell and are hidden, growing inside the cell’s wall.

To mount a defense against these cloaked attackers, Darren Higgins, Associate Professor of Microbiology at Harvard Medical School, and H.G. Archie Bouwer, Immunology Research Scientist at the Earle A. Chiles Research Institute and Portland VA Medical Center, have developed a vaccine strategy for generating an attenuated strain of an intracellular bacterial pathogen. The study appears in the PNAS online early edition the week of March 20, 2006. The vaccine approach could also protect against other intracellular bacterial pathogens, such as tularemia.


The team has initially applied their strategy to Listeria monocytogenes, which affects the most vulnerable humans – the chronically ill, the elderly, pregnant women, and young children, who are susceptible to a serious infection caused by eating food contaminated with the bacteria. In the United States, an estimated 2,500 persons become seriously ill with the infection each year. Of these, 500 die.

After absorption by antigen presenting cells, the attenuated Listeria strain does not replicate, and is readily killed. Unlike other attenuated Listeria strains that do not replicate in host cells, vaccine studies in animals showed that the new strain provided protection from challenge with a virulent, disease-causing, Listeria strain.

"For the first time, an attenuated strain of Listeria that does not replicate in an animal and does not require any manipulation of the bacterium or host prior to immunization still provides protective immunity," Higgins said.

The team found the replication-deficient vaccine strain of Listeria was cleared rapidly in both normal and immunocompromised mice. At the same time, a required class of T-cells – coordinators of the immune system – was stimulated following immunization. As a result, animals immunized with the vaccine strain were resistant to 40 times the lethal dose of virulent Listeria.

"In theory, we could apply this vaccine strategy to other bacterial pathogens like Salmonella," said Higgins. "All we need is to use existing strains that do not replicate inside host cells."

The new Listeria vaccine was based on a 2002 study performed by the Higgins group in which they developed killed E. coli strains as vehicles for delivering antigens to professional antigen presenting cells in the body. In the prior study, Higgins showed that the E. coli-based vaccines protected mice from developing tumors when challenged with melanoma producing cells.

"We have now taken our E. coli-based cancer vaccine work and expanded it into infectious disease areas," Higgins said. "Our Listeria studies demonstrate the potential to generate vaccine strains of bacteria that are effective, yet safe for both healthy and immunocompromised individuals."

The Higgins and Bouwer team is continuing to improve and expand their approach to other intracellular bacteria.

Judith Montminy | EurekAlert!
Further information:
http://www.hms.harvard.edu

More articles from Health and Medicine:

nachricht Hot cars can hit deadly temperatures in as little as one hour
24.05.2018 | Arizona State University

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>