Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Reveal Possibility of Separating Anticancer Properties of Vitamin D

20.03.2006


At the right dose, vitamin D is important for bone development and may help protect against the development of several cancers, particularly colorectal cancer. However, large quantities designed to exploit the vitamin’s anticancer properties can lead to a toxic overdose of calcium in the blood. Now, research done at Georgetown University’s Lombardi Comprehensive Cancer Center indicates that it may be possible to separate the anticancer properties of vitamin D from its other functions.



Their study, reported in the journal Molecular Cell, found that mutant forms of the protein that binds to vitamin D in the cell do not allow vitamin D to promote bone development and calcium transport but do permit it to regulate an oncogenic protein known as beta catenin. Some modified forms of vitamin D itself, which do not alter bone and calcium, were also found to regulate beta-catenin.

“We found that we might be able to separate the two functions at the molecular level, and this raises the possibility that vitamin D can be chemically modified into a drug that will only have anticancer effects,” said Professor Stephen Byers, Ph.D. He and Salimuddin Shah, Ph.D., led an international group of investigators in this study.


The human body produces a lot of vitamin D from a brief exposure of the sun. The vitamin is made in the skin when a cholesterol-like molecule interacts with ultraviolet light. It has long been known that a lack of vitamin D can lead to the bone deformities associated with rickets, and the vitamin helps maintain calcium and phosphorous levels in bone and blood. Too much vitamin D, however, can spill calcium into the blood and lead to heart disease and death.

Population studies have also uncovered an interesting fact — that the risk of developing colon cancer is lower in people who live in sunny climates. Epidemiology studies have indicated that vitamin D is responsible for the protective effect of sunlight exposure on the incidence of several other cancers besides colon, including breast and prostate.

Byers and the research team suspected that beta catenin may interact with vitamin D in some fashion because of another known fact — activation of beta catenin causes most colon cancers.

To help them understand what vitamin D is doing in the cell, the researchers studied findings by other scientists who had looked at families who develop rickets due to an inherited mutation in their vitamin D receptor. Most of these patients had both rickets and alopecia (baldness). However a small number of families had mutations in the receptor which only led to rickets. “We know beta catenin is also involved in regulation of hair growth and we wondered if these particular mutations might also allow the receptor to regulate beta catenin,” Byers said.

“We found a mutation which caused rickets but not alopecia but which still allowed beta catenin to bind to the vitamin D receptor,” he said. This suggested to the researchers that it may be possible to separate the anti-cancer role of vitamin D from its effects on bone and calcium.

If a drug mimic of vitamin D can be developed, it could prove useful in preventing some cancers at their earliest stages, but would probably not offer any therapeutic benefit for later stage cancers, Byers said. “That’s because we know that by the time colon cancer is well advanced it fails to respond to vitamin D.”

About Georgetown University Medical Center
Georgetown University Medical Center is an internationally recognized academic medical center with a three-part mission of research, teaching and patient care (through our partnership with MedStar Health). Our mission is carried out with a strong emphasis on public service and a dedication to the Catholic, Jesuit principle of cura personalis—or “care of the whole person.” The Medical Center includes the School of Medicine and the School of Nursing and Health Studies, both nationally ranked, and the world renowned Lombardi Comprehensive Cancer Center.

Liz McDonald | EurekAlert!
Further information:
http://gumc.georgetown.edu

More articles from Health and Medicine:

nachricht Finnish research group discovers a new immune system regulator
23.02.2018 | University of Turku

nachricht Minimising risks of transplants
22.02.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>